Use of web-based tools for quantitative metabolomics

Jianguo (Jeff) Xia Wishart Research Group University of Alberta, Canada

Metabolomics in the University of Alberta

DI/GC/LC-MS, HPLC, NMR

Software Tools Compound Databases

Outline

Introduction

- Omics data overview
- Lessons from other omics research
- Project goals
- Web-based metabolomics tools
 - I. General data processing & statistical analysis
 - I. MetaboAnalyst (http://www.metaboanalyst.ca)
 - II. Identify functionally interesting patterns
 - I. MSEA (http://www.msea.ca)
 - III. Metabolic Pathway Analysis
 - I. MetPA (http://metpa.metabolomics.ca)
- Public databases
- Summary

The '-omics' data overview

Genomics	DNA sequence	100,000 - 1,000,000
Transcriptomics	Gene expression	10,000 - 100,000
Proteomics	Protein expression/ interaction	1,000 – 10,000
Metabolomics	Compound concentration	100 – 1,000

Common questions

- 1. Are there some **interesting patterns** present in my data?
- 2. What are the most **important features** associated with different phenotypes?
- 3. Is there a **real difference** between the groups?
- 4. Can I use this data to **predict** a phenotype?
- 5. How to **interpret** these features / patterns?
- 6. How does my result compared with published data?

Common approaches

1 st	Classical statistics	T-tests, ANOVA	Since 1950s
2 nd	High-dimensional feature selection; Machine learning	SAM, Limma; SVM, Neural networks	Since 1990s
3 rd	Group-based enrichment analysis	GSEA, GSA, Globaltest	Since 2003
4 th	Pathway Analysis	SPIA, TopoGSA	Since 2007

Project Goals

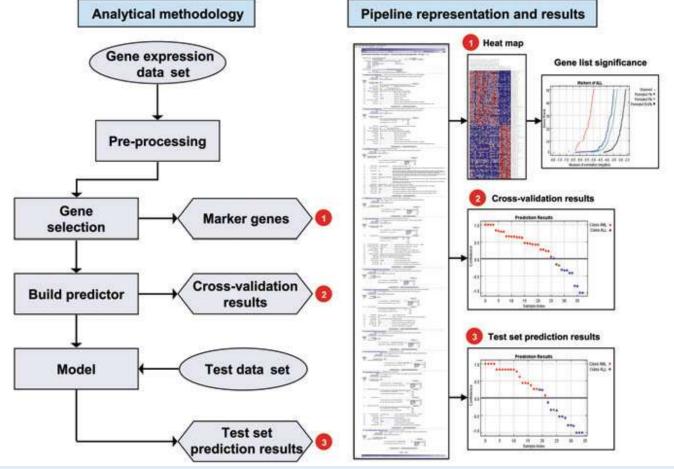
- Provide well-established methods proven highly successful in other 'omics' studies;
 - Do not re-invent the wheel!
- Support traditional approaches
 - Cheminformatics approaches
 - Data processing & normalization procedures
- Easy-to-use
 - Not command-line
 - Target users bench biologists

Indentify influential algorithms

[HTML] <u>Cluster **analysis** and display of genome-wide expression patterns</u> MB Eisen, PT Spellman, PO Brown, ... - Proceedings of the ..., 1998 - National Acad Sciences ... **Microarray**-based genomic surveys and other high-throughput approaches (ranging from genomics to ... with the addition of uncharacterized genes (the results of this **analysis** will be ... Finally, the functional concordance of coexpressed genes imparts biological **significance** to the ... <u>Cited by 9813</u> <u>Related articles</u> - <u>BL Direct</u> - <u>All 184 versions</u>

Significance analysis of microarrays

VG Tusher, R Tibshirani, G Chu - US Patent 7,363,165, 2008 - Google Patents US007363165B2 (12) United States Patent lusher et al. (io) Patent No.: US 7,363,165 B2 (45) Date of Patent: Apr. 22, 2008 (54) **SIGNIFICANCE ANALYSIS** OF **MICROARRAYS** (75) Inventors: Virginia Goss Tusher, Palo Alto, CA (US); Robert Tibshirani, Palo Alto, CA (US); ... <u>Cited by 5558</u> - <u>Related articles</u> - <u>BL Direct</u> - <u>All 81 versions</u>


Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide

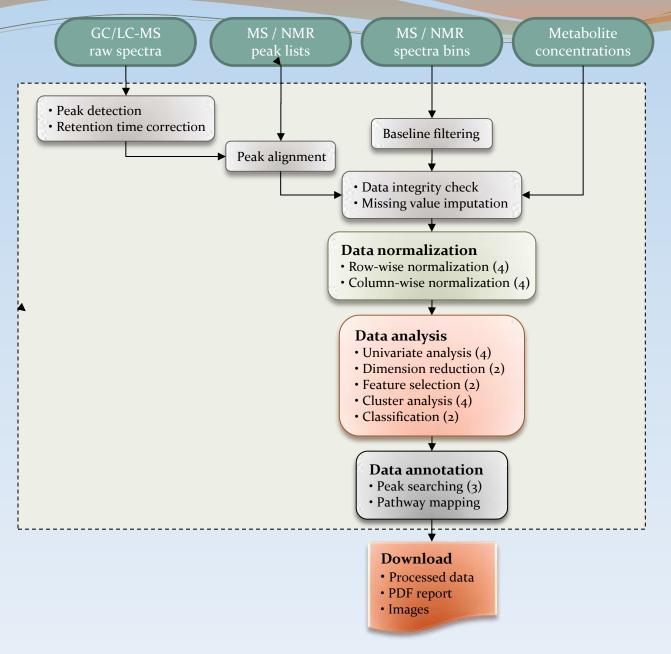
expression profiles

..., P Tamayo, VK Mootha, S Mukherjee, ... - Proceedings of the ..., 2005 - National Acad Sciences Although genomewide RNA expression **analysis** has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called **Gene Set Enrichment Analysis** (... <u>Cited by 1738</u> - <u>Related articles</u> - <u>BL Direct</u> - <u>All 38 versions</u>

Identify the best practices

Nature Genetics - 38, 500 - 501 (2006)

Metabolomics web applications


- General data processing & analysis
 - MetaboAnalyst
 - http://www.metaboanalyst.ca
- Metabolite Set Enrichment Analysis
 - -MSEA
 - http://www.msea.ca
- Metabolomic Pathway Analysis
 - MetPA
 - http://metpa.metabolomics.ca

MetaboAnalyst

- http://www.metaboanalyst.ca
- General metabolomics data processing, normalization, and statistical analysis
 - Support two-group and multi-group analysis
 - 20+ well-established methods
 - Dynamic graphical presentation
 - Automatic report generation

What MetaboAnalyst can:

- Basic data processing:
 - Peak picking, Peak alignment, Baseline filtering, etc.
- Data normalization
 - probabilistic quotient normalization, scaling, etc.
- Data overview
 - PCA, Heatmaps, etc.
- Identify important features
 - t-tests, ANOVA, SAM, etc.
- Classification
 - PLS-DA, random Forest, SVM, etc.

MetaboAnalyst

Welcome (click here to start)

Home

Overview

Data Formats

Tutorials &

Resources

FAQs

Release Notes and Updates:

- · Please upgrade your browser if this page does not display properly.
- Bug fix: Color inconsistencies b/w the confidence ellipses and sample class labels (used in PCA abd PLS-DA 2D plot)(06/17/10);
- Bug fix: Updated the interface for <u>zip file upload</u> to support multiple-group analysis of <u>peak lists</u> and <u>spectra</u> <u>data</u> (06/15/10);
- Introducing Data Editor to enable samples/features exclusion (i.e. outliers) during analysis (06/14/10);
- Added ANOVA and associated post-hoc analyses for multi-group data (06/10/10); [№]
- MetaboAnalyst now supports data analysis for more than two groups. (06/01/10); ^{NEW}
- For data collected from human or other mammalian species, you may also want to visit our new web application <u>MSEA (http://www.msea.ca)</u> for more advanced data analysis. (05/11/10);

Read more

Please Cite:

Data Upload

Steps
1.Upload
- <u>2. Process</u>
<u>**Data Editor</u>
<u> </u>
▼ <u>4. Analyze</u>
<u>Univariate</u>
- PCA
- PLSDA
- SAM
EBAM
Tree & heatmap
Knean & SOM
- RandomForest
R-SVM
<u>5. Peak Search</u>
6. Pathway Mapping
7. Download
<u> </u>

Home

Your home directory is now set up. You can choose either 1) <u>Upload your data</u> or 2) <u>Try our test data</u> in order to proceed. Please note, the uploaded data and analysis result will remain in the server for 72 hours before being deleted automatically.

1) Upload your data (Data Format)

Data type :	${\mathbb C}$ Concentrations ${\mathbb C}$ Spectral bins ${\mathbb C}$ Peak intensity table	
Format:	Samples in rows (unpaired)	Quiproi
Data file :	Choose File no file selected	Submi
_	ata Format 2.0 Compatible)"	
Zipped	2.0 Compatible)"	
_		
Zipped	You should create a separate folder for each	

Data processing and integrity check

Data Integrity Check

Details:

The class labels must contain only two groups.

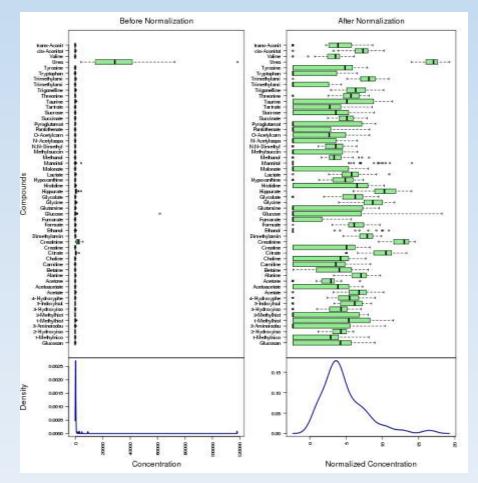
2. If the samples are paired, the pair labels must conform to the specified format.

3. The data (except class labels) must not contain non-numeric values.

4. Compound concentration or peak intensity values cannot be negative.

h	
1	Data processing information
	Checking data contentpassed
	Two groups were detected based on the sample labels.
	Samples are not paired.
	All data values are numeric.
	All data values are non-negative.
	A total of 0 , (0 %) zero values were detected
	A total of 0 , (0 %) missing values were detected
	By default, these values will be replaced by a small value
	Click Skip button if you accept the default practice
	Or click Missing value imputation to use other methods
ľ	

Missing value imputation

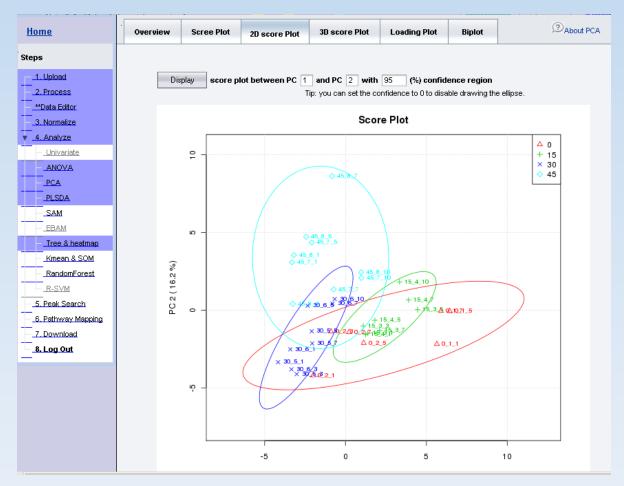

Skip

Data normalization (1)

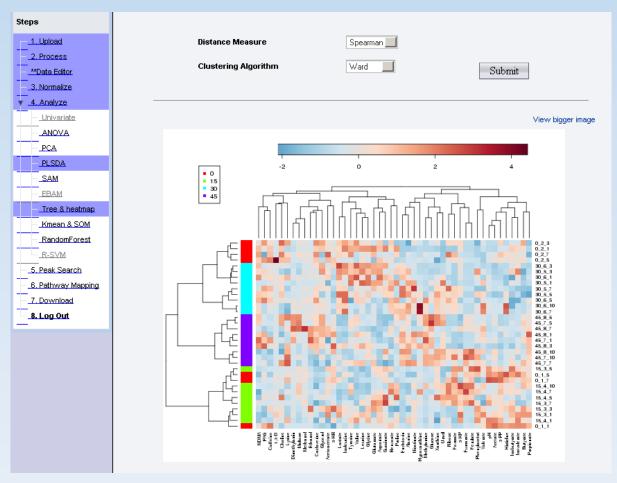
Row-wise normaliz	ation	
	by sum by a reference sample erence sample after normalization	P002
	oy a reference feature c normalization (i.e. dry weight, volume)	<not set=""></not>
Column-wise norm	alization	
C None		
C Log	(log ₂ transformation)	
• Autoscaling	(mean-centered and divided by the standard deviation of eac	h variable)
C Pareto Scaling	(mean-centered and divided by the square root of standard d	eviation of each variable)
O Range Scaling	(mean-centered and divided by the range of each variable)	

Process

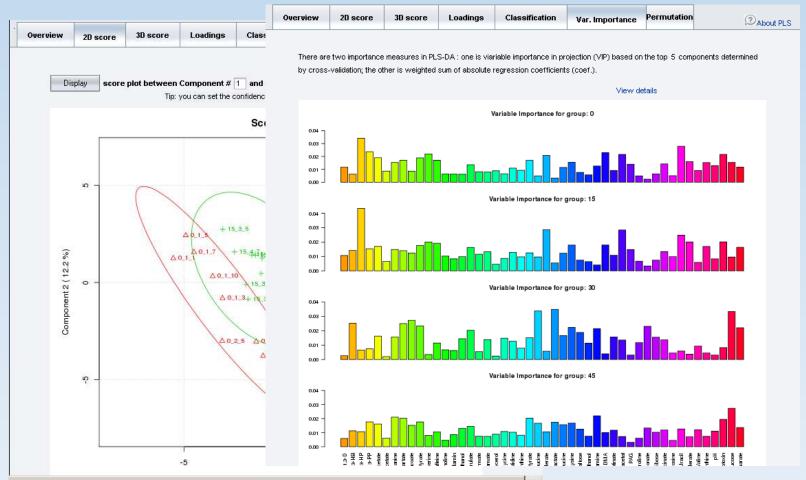
Data normalization (2)


Data Analysis

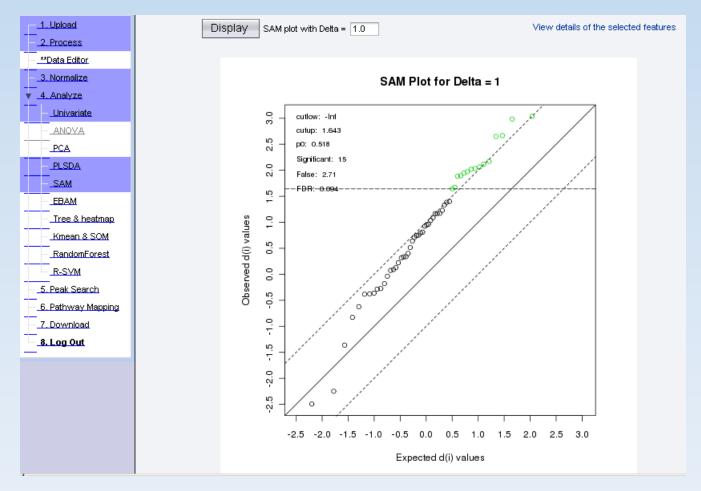
Home

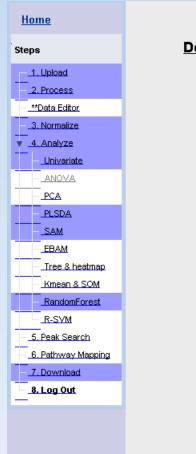

Steps

Select an analysis path to explore : 1. Upload 2. Process Univariate Analysis **Data Editor Fold Change Analysis, t-Tests, and Volcano plot (two-group only) 3. Normalize One-way Analysis of Variance (ANOVA) 4. Analyze Univariate Chemometrics ANOVA Principal Component Analysis (PCA) PCA Partial-Least Square - Discriminant Analysis (PLS-DA) PLSDA (permutation is only available for two-group data) SAM EBAM Significant Feature Identification Tree & heatmap Significance Analysis of Microarray (and Metabolites) (SAM) Kmean & SOM Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM) (two-group only) RandomForest R-SVM **Cluster Analysis** 5. Peak Search Hierarchical Clustering - Dendrogram and Heatmap 6. Pathway Mapping Partitional Clustering - K-Means and Self Organizing Map (SOM) 7. Download 8. Log Out **Classification & Feature Selection** Random Forest Support Vector Machine (SVM) (two-group only)


Clustering with PCA

Hierarchical clustering


Supervised approach – PLS-DA


Feature selection - ANOVA

<u>Home</u>								r
Steps	0				Compounds	p.value	-log10(p)	Post-hoc (Fisher's LSD)
1. Upload	Une-	way Ana	alysis of Varian	ce (ANUV	Methylamine	0.0	6.44521	45 - 0; 45 - 15; 45 - 30
					Endotoxin	0.0	6.17744	30 - 0; 45 - 0; 30 - 15; 45 - 15
		Signif	icance Level (alpha	i): p	3-PP	0.0	6.12539	0 - 30; 0 - 45; 15 - 30; 15 - 45
<u> </u>		Post-l	noc Analysis	C .	Glucose	0.0	5.96225	45 - 0; 45 - 15; 45 - 30
4. Analyze					Oldcose	0.0	0.00220	40-0,40-10,40-00
- <u>Univariate</u>				L	Alanine	2.0E-5	4.76571	30 - 0; 45 - 0; 30 - 15; 45 - 15
					Butyrate	7.0E-5	4.17052	0 - 30; 15 - 30; 45 - 30
					Isoleucine	7.0E-5	4.13585	30 - 0; 0 - 45; 30 - 15; 30 - 45
SAM					3-HP	1.4E-4	3.85052	15 - 0; 15 - 30; 15 - 45
- <u>_EBAM</u>					Lactate	2.0E-4	3.6996	30 - 0; 30 - 15; 30 - 45
<u>Tree & heatmap</u> Kmean & SOM					Aspartate	2.1E-4	3.68363	0 - 45; 15 - 45; 30 - 45
RandomForest		e ·	•		Isobutyrate	4.9E-4	3.30596	0 - 30; 0 - 45; 15 - 30; 15 - 45
<u></u>		· ک	•		Uracil	9.0E-4	3.04602	15 - 0; 30 - 0; 45 - 0
<u> </u>		<u> </u>		•	Dimethylamine	0.00502	2.29908	45 - 0; 45 - 15; 45 - 30
7. Download		-log10(p) 3	• •		Propionate	0.00536	2.27083	45 - 0: 45 - 30
8. Log Out		-log 3	1					·
-		CI -	•	•	Lysine	0.00559	2.2524	0 - 30; 45 - 15; 45 - 30
				•	Acetate	0.0081	2.0913	0 - 30; 0 - 45; 15 - 30
			1.	•	рН	0.01032	1.98623	0 - 30; 0 - 45; 15 - 45
		0	-L	•	NDMA	0.01665	1.77856	0 - 15; 30 - 15; 45 - 15
			0	10	Ferulate	0.0173	1.76206	15 - 30; 45 - 30
					Ir compound	<u> </u>		

Feature selection - SAM

Data Downloa

<u>Download</u>

The "Download.zip" c via email link. The date

Email address

The email service below.

Download.zip compounds.csv data_normalized data_processed. pls_loading.png pls_score3d.png rf_cls.png rf_cls.png Rhistory.R sam_fdr.png univar_t.png

2.2 Principal Component Analysis (PCA)

PCA is an unsupervised method aiming to find the directions that best explain the variance in a data set (X) without referring to class labels (Y). The data are summarized into much fewer variables called *scores* which are weighted average of the original variables. The weighting profiles are called *loadings*. The PCA analysis is performed using the **prcomp** package. The calculation is based on singular value decomposition.

The Rscript chemometrics.R is required. Figure 6 is pairwise score plots providing an overview of the various separation patterns among the most significant PCs; Figure 7 is the scree plot showing the variances explained by the selected PCs; Figure 8 shows the 2-D score plot between selected PCs; Figure 9 shows the 3-D score plot between selected PCs; Figure 10 shows the loading plot between the selected PCs; Figure 11 shows the biplot between the selected PCs.

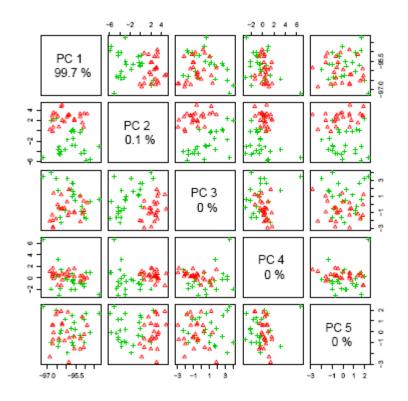
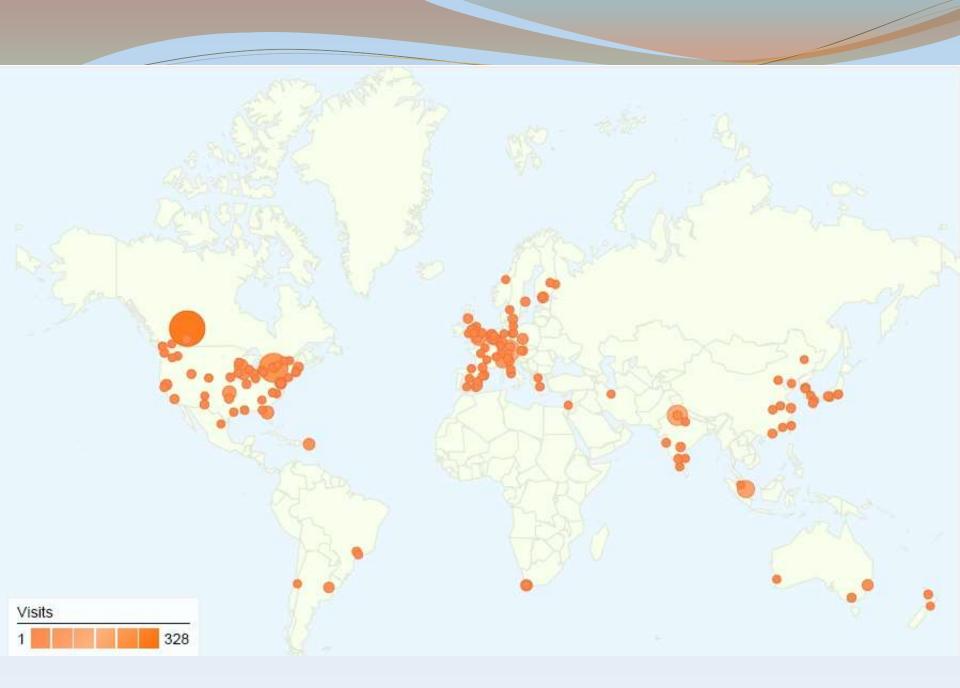



Figure 6: Pairwise score plots between the selected PCs. The explained variance of each PC is shown in the corresponding diagonal cell.

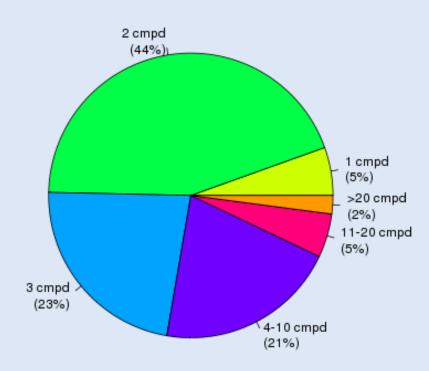
Updates & Forecast

- Recently upgraded
 - Support for multiple group analysis
 - One-way ANOVA & post-hoc analysis
- To be added
 - To add some advanced methods for
 - Association analysis / ROC / OPLS
 - To enhance web interfacing with XCMS
 - Allow local installation
 - To be released by the end of this summer

Data Interpretation

- Manual approach
 - Background knowledge plus literature search
 - Basic & Intuitive
 - Can be very accurate
 - Issues
 - Time-consuming
 - Subjective
 - Lack of statistical strength

Introducing MSEA


- <u>http://www.msea.ca</u>
- Metabolite Set Enrichment Analysis
- Identify biological meaningful patterns from quantitative metabolomics data

Biologically meaningful


Summary of Human Metabolite Set Libraries

Category	Metabolite set #
All	5,380
Disease associated (blood)	344
Disease associated (urine)	290
Disease associated (CSF)	108
Single Nucleotide Polymorphism (SNP) associated	4,501
Biochemical pathways	80
Tissue or sub-cellular location	57

Distribution of cmpd # in metabolite sets

The MSEA approach

MSEA @ www.msea.ca

Metabolite Set Enrichment Analysis (MSEA)

- discover biologically meaningful patterns in quantitative metabolomic data

News and Updates:

- Added 4,500 SNP- associated metabolite sets (06/05/10); NEW
- Added support for <u>Biocrates</u> metabolite IDs (06/01/10);

Overview

MSEA is a web-based tool to help identify and intepret patterns of metabolite concentration changes in a biologically meaningful context for **human** and **mammalian** metabolomic studies.

MSEA provides three types of enrichment analyses:

- · ORA performs over representation analysis for a list of metabolites;
- SSP performs single sample profiling on <u>a biofluid sample</u> by first comparing the measured compound concentrations to their normal ranges reported in literature and then testing for potentially interesting patterns;
- QEA performs quantitative enrichment analysis directly on <u>a</u> <u>compound concentration table</u> with either discrete (binary, multiclass) or continuous phenotype labels.

The analyses are based on five built-in metabolite set libraries containing over 1,000 biologically meaningful groups of metabolites. In addition, users can upload their self-defined metabolite sets (i.e. defined for other species) for enrichment analysis.

MSEA enables simultaneous biomarker discovery and functional

Enrichment Analysis

Over Representation Analysis (ORA)

Single Sample Profiling (SSP)

Quantitative Enrichment Analysis (QEA)

Other Tasks

Compound ID Conversion Browse Metabolite Set Libraries

Documentation

MSEA Workflow

Library Descriptions

Screenshot Tutorials

Over-representation analysis

Single Sample Profiling (SPP)

Enter your data below (two-column data):

- compound labels and concentration values separated by tab

Over Rep

L-Isolecine 0.34	
Furnaric acid 0.47	
Acetone 0.58	
Succinic acid 9.4	
1-Methylhistidine 9.6	
L-Asparagine 19.62	
3-Methylhistidine 9.7	
L-Threonine 93.19	
Creatine 720	
cis-Aconitic acid 14.39	
L-Tryptophan 35.78	
L-Carnitine 16.01	
L-Serine 17.32	
L-Tyrosine 67.51	
L-Alanine 219.02	
L-Fucose 20.37	
D-Glucose 23.92	
Pyroglutamic acid 26.38	
Formic acid 26.72	
Indoxyl sulfate 34.21	
Dimethylamine 38.28	
Ethanolamine 39.29	
Glycolic acid 41.39	
L-Glutamine 52.99	
L-Histidine 55.95	
Trigonelline 57.4	
3-Aminoisobutanoic acid 89.76	
Compound label: Compound names	
Biofluid (unit) Urine (umol/mmol_creatinine)	

Compound label standardization

Metabolite Set Enrichment Analysis (MSEA)

- discover biologically meaningful patterns in quantitative metabolomic data

<< Back

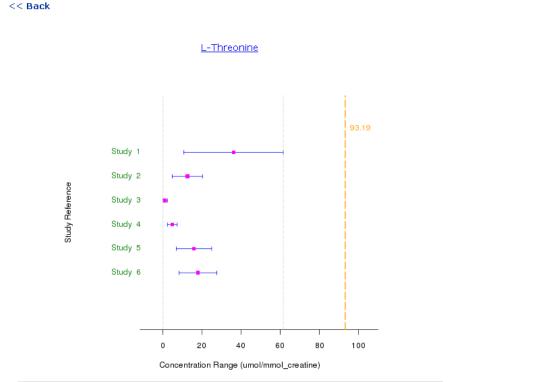
Home

Compound Label Standardization:

PLease note:

- · Query names in normal white indicate exact match marked by "1" in the download file;
- Query names highlighted in yellow indicate approximate matches (for compound name matches) marked by "2" in the downloaded file. Users should manually select the correct match by clicking the <u>View</u> link of the corresponding compounds. Otherwise, the first match will be used;
- Query names highlighted in red indicate no match marked by "0" in the downloaded file;
- · Greek alphabets are not recognized, they should be replaced by English names (i.e. alpha, beta)

Query	Best Match	HMDB	Details
1,6-Anhydro-beta-D-glucose	Glucosan	HMDB00640	
1-Methylnicotinamide	1-Methylnicotinamide	HMDB00699	
2-Aminobutyrate	L-Alpha-aminobutyric acid	HMDB00452	
2-Hydroxyisobutyrate	Alpha-Hydroxyisobutyric acid	HMDB00729	
2-Oxglutarate	Oxoglutaric acid	HMDB00208	View
3-Aminoisobutyrate	3-Aminoisobutanoic acid	HMDB03911	
3-Hydroxybutyrate	3-Hydroxybutyric acid	HMDB00357	
3-Hydroxyisovalerate	3-Hydroxyisovaleric acid	HMDB00754	
3-Indoxylsulfate	Indoxyl sulfate	HMDB00682	
4-Hydroxyphenylacetate	p-Hydroxyphenylacetic acid	HMDB00020	
Acetate	Acetic acid	HMDB00042	
Acetone	Acetone	HMD801659	
Adipate	Adipic acid	HMDB00448	
Alanine	L-Alanine	HMD800161	
Asparagine	L-Asparagine	HMDB00168	
Betaine	Betaine	HMDB00043	
Carnitine	L-Carnitine	HMDB00062	
Citrate	Citric acid	HMDB00094	
Creatine	Creatine	HMDB00064	

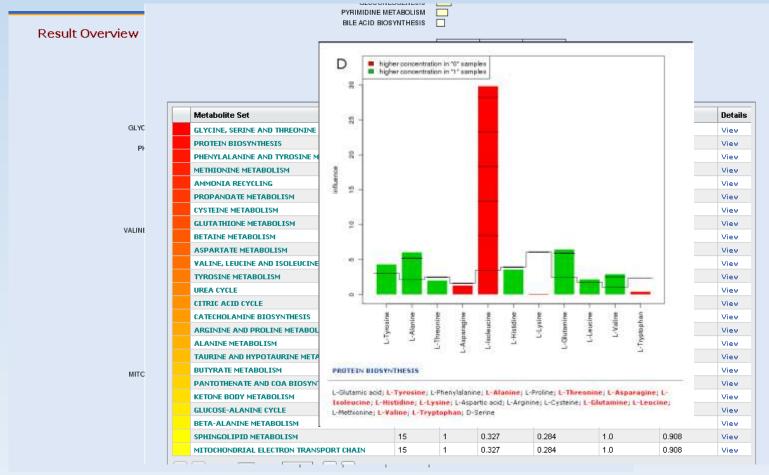

Identify abnormal concentration

Comparison with F

Note: reference concentratic literature, the min and max (within range), lower con comparisons.

Compound Concentrati L-Isoleucine 0.34 Fumaric acid 0.47 0.58 Acetone Succinic acid 9.4 1-Methylhistidine 9.6 19.62 L-Asparagine 3-Methylhistidine 9.7 L-Threonine 93.19 720 Creatine

Study	Concentration	Reference	
Study 1	36.2 (10.82 - 61.58)	Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. (<u>Pubmed</u>)	
Study 2	12.7 (4.934 - 20.4)	Doctor's Data	


METABOLOMICS 2010

<u>_</u>

Library selection

Choose a Metabolite Set Library Home Pathway-associated metabolite sets This library contains 88 metabolite sets based on normal metabolic pathways. C Disease-associated metabolite sets (Blood) This library contains 416 metabolite sets reported in human blood. O Disease-associated metabolite sets (Urine) This library contains 346 metabolite sets reported in human urine. O Disease-associated metabolite sets (CSF) This library contains 124 metabolite sets reported in human cerebral spinal fluid (CSF). O SNP-associated metabolite sets This library contains 4,500 metabolite sets based on their strong association (p value < 1e-3) with detected single nucleotide polymorphisms (SNPs) loci. O Location-based metabolite sets This library contains 57 metabolite sets based on organ, tissue, and subcellular localizations. Self-defined metabolite sets Click the link above to upload your own customized metabolite set library Only use metabolite sets containing at least 2 compounds Submit i E

Result

Download

Metabolite Set Enrichment Analysis (MSEA)

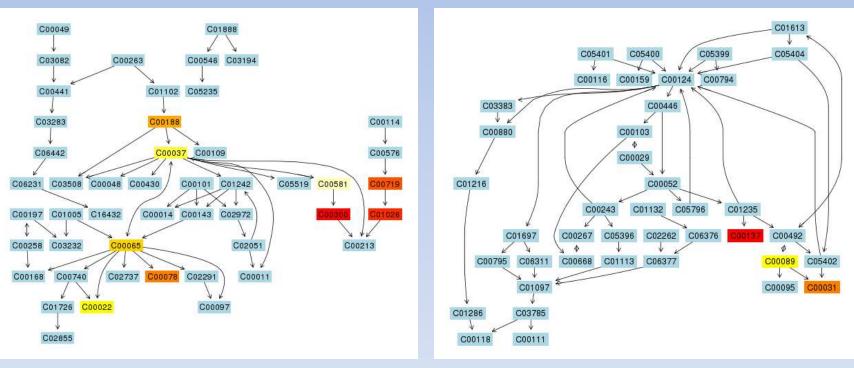
- discover biologically meaningful patterns in quantitative metabolomic data

Result Download

Home

The "Download.zip" contains all the files in your home directory. These data will remain in the server for 72 hours before being deleted automatically.

name_map.csv pca-load.png		
pca-score.png		
pls-load.png		
pls-score.png		
Rhistory.R		
	Log Out	


MSEA summary

- More biologically-motivated
- Simultaneously biomarker identification and interpretation
- Automatic comparison with published data
 - Important patterns
 - Reference concentrations
- Potential issues
 - Limited by the size and quality of the knowledge database
 - For pathway-based metabolite sets
 - Does not consider the pathway topology

Topology matters

Glycine, serine and theonine metabolism

Galactose metabolism

p = 1e-5

p = 1e-7

Introducing MetPA

- <u>http://metpa.metabolomics.ca</u>
- Pathway Analysis Tool
 - 884 pathways covering 11 model organisms
 - Enrichment Analysis
 - Global Test
 - Global ANCOVA
 - Topology Analysis
 - Degree Centrality
 - Betweenness Centrality
 - Google-map style visualization

MetPA

A web-based metabolomics tool for pathway analysis & visualization

Home Help Library

Welcome (Click here to start analysis)

MetPA (Metabolomics Pathway Analysis) is a free and easy-to-use web application designed to perform pathway analysis and visualization of quantitative metabolomic data.

- MetPA accepts either a list of important compounds identified from your studies, or a metabolite concentration table with binary, multi-group, or continuous phenotype labels.
- MetPA combines three complemetary analyses pathway enrichment analysis (including hypergeometric test, Fishers' exact test, Globaltest, and GlobalAncova), pathway topology analysis (based on degree centrality or betweenness centrality measures), and univariate analysis (including t-test, ANOVA, and linear regression), to help identify the most relevant metabolic pathways involved in the conditions under study;
- MetPA implements a Google-Map style interactive network visualization system which provides a comprehensive three-level view - <u>metabolome view</u>, <u>pathway view</u>, and <u>compound view</u>. Users can intuitively explore the analysis results through point and click. The system also supports lossless zooming, dragging, linking, and highlighting;
- MetPA currently supports pathway analysis for 11 model organisms, including Human, Mouse, Rat, Cow, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Budding yeast, and E.coli., with a total of 884 pathways.

11 pathway libraries (KEGG)

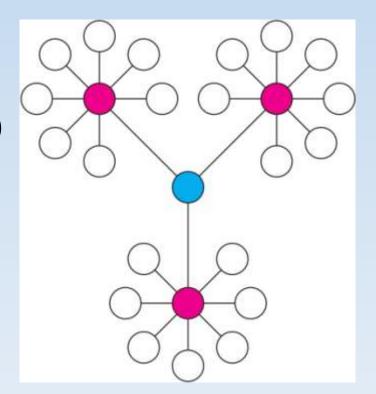
Please select a pathway library :

Mammals	 Homo sapiens (human) [80] Mus musculus (mouse) [82] Rattus norvegicus (rat) [81] Bos taurus (cow) [81]
Fishes	O Danio rerio (zebrafish) [81]
Insects	🔿 Drosophila melanogaster (fruit fly) [79]
Nematodes	C Caenorhabditis elegans (nematode) [78]
Fungi	C Saccharomyces cerevisiae (yeast) [65]
Plants	○ Oryza sativa japonica (Japanese rice) [83] ○ Arabidopsis thaliana (thale cress) [87]
Prokaryotes	O Escherichia coli K-12 MG1655 [87]

Combining Enrichment analysis & Topology analysis

Please specify pathway analysis algorithms :

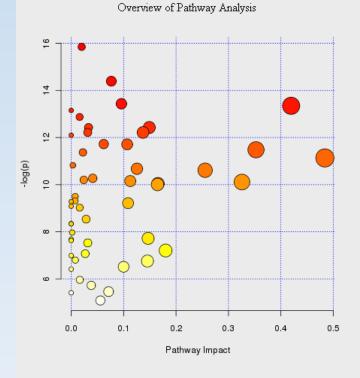
Over Representation Analysis	 Hypergeometric Test C Fisher's Exact Test
Pathway Topology Analysis	 Relative-betweeness Centrality (2) Out-degree Centrality (2)
	Submit

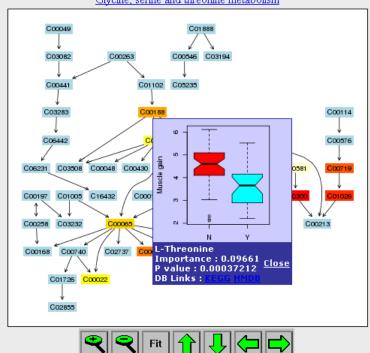

Please specify pathway analysis algorithms :

Pathway Enrichment Analysis C Global Ancova	
Pathway Topology Analysis © Relative-betweeness Centrality © Out-degree Centrality ©	

Submit

Node importance measure: centrality

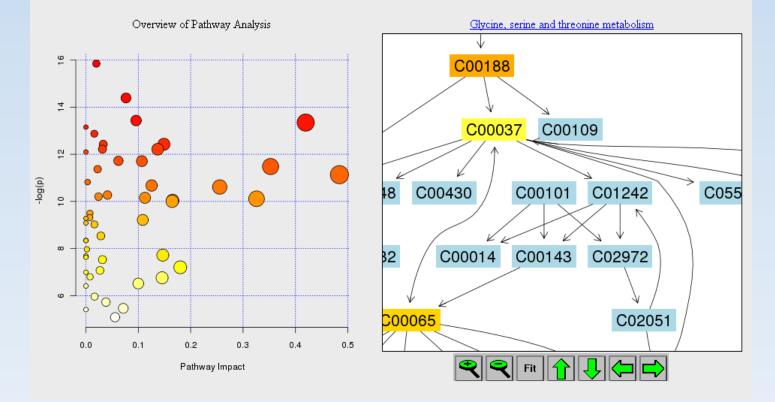

- Degree Centrality
 - Local structure;
 - Highly connected (hub)
 - The Red nodes
- Betweeness Centrality
 - Global structures;
 - Sits on many shortest paths between other nodes
 - The Blue node



Junker et al. BMC Bioinformatics 2006

Point and Click

The pathway can be launched either by clicking the corresponding node on the left image or by clicking the pathway name from the table below. Please note, each node (compound) is clickable. You can <u>zoom in and out</u> using the control buttons below, and then <u>drag</u> the image to the locations of your interest. Place <u>mouse over</u> each metabolite node will reveal its common name. <u>Click the</u> <u>node</u> will trigger **compound view** of the selected compound.



Glycine, serine and threonine metabolism

Lossless zooming

The pathway can be launched either by clicking the corresponding node on the left image or by clicking the pathway name from the table below. Please note, each node (compound) is clickable. You can <u>zoom in and out</u> using the control buttons below, and then <u>drag</u> the image to the locations of your interest. Place <u>mouse over</u> each metabolite node will reveal its common name. <u>Click the</u> <u>node</u> will trigger **compound view** of the selected compound.

Result table

Pathway Name	Total Cmpd	Hits	Raw p 🛧	-log(p)	Holm p	FDR	Impact 🔩	Details
Galactose metabolism	41	3	1.3105E-7	6.8826	6.6833E-6	6.6833E-6	0.01992	KEGG SMP
Starch and sucrose metabolism	50	3	5.6226E-7	6.2501	2.8113E-5	1.4338E-5	0.0765	KEGG SMP
Glycolysis or Gluconeogenesis	31	4	1.4659E-6	5.8339	7.183E-5	1.9816E-5	0.09576	KEGG SMP SMP
Pyruvate metabolism	32	4	1.5995E-6	5.796	7.6774E-5	1.9816E-5	0.41957	KEGG SMP
Amino sugar and nucleotide sugar metabolism	88	3	1.9428E-6	5.7116	9.1311E-5	1.9816E-5	0.0	KEGG SMP SMP
Propanoate metabolism	35	4	2.5699E-6	5.5901	1.1822E-4	2.1844E-5	0.01603	KEGG SMP
Valine, leucine and isoleucine biosynthesis	27	6	4.0178E-6	5.396	1.808E-4	2.5278E-5	0.14892	KEGG SMP
Sulfur metabolism	18	2	4.019E-6	5.3959	1.808E-4	2.5278E-5	0.03307	KEGG SMP
Phenylalanine metabolism	45	6	4.9533E-6	5.3051	2.1299E-4	2.5278E-5	0.0315	KEGG SMP
Inositol phosphate metabolism	39	1	4.9565E-6	5.3048	2.1299E-4	2.5278E-5	0.13703	KEGG SMP
Pentose phosphate pathway	32	2	5.5736E-6	5.2539	2.2852E-4	2.5841E-5	0.0	KEGG SMP
Arginine and proline metabolism	77	6	8.1109E-6	5.0909	3.2443E-4	3.2248E-5	0.06203	KEGG SMP
Tyrosine metabolism	76	5	8.22E-6	5.0851	3.2443E-4	3.2248E-5	0.10681	KEGG SMP SMP
Taurine and hypotaurine metabolism	20	3	1.0339E-5	4.9855	3.9288E-4	3.7664E-5	0.35252	KEGG SMP
Valine, leucine and isoleucine degradation	40	3	1.1562E-5	4.937	4.278E-4	3.9311E-5	0.02232	KEGG SMP
Glycine, serine and threonine metabolism	48	9	1.4605E-5	4.8355	5.2577E-4	4.6552E-5	0.48394	KEGG SMP
Selenoamino acid metabolism	22	1	2.0003E-5	4.6989	7.001E-4	6.0008E-5	0.00321	KEGG SMP
Butanoate metabolism	40	5	2.3138E-5	4.6357	7.867E-4	6.5559E-5	0.12541	KEGG SMP
Alanine, aspartate and glutamate metabolism	24	6	2.4638E-5	4.6084	8.1306E-4	6.6134E-5	0.25546	KEGG SMP SMP SMP
Nicotinate and nicotinamide metabolism	44	5	3.4668E-5	4.4601	0.0011094	8.8404E-5	0.04113	KEGG SMP
Pentose and glucuronate interconversions	53	2	3.7128E-5	4.4303	0.001151	9.0104E-5	0.02401	KEGG
Aminoacyl-tRNA biosynthesis	75	12	3.8942E-5	4.4096	0.0011683	9.0104E-5	0.11268	KEGG
Citrate cycle (TCA cycle)	20	6	4.0635E-5	4.3911	0.0011784	9.0104E-5	0.32569	KEGG SMP

Downloads

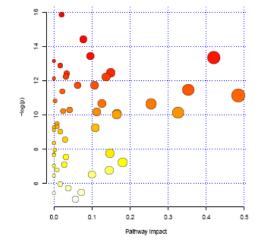


Figure 1: Summary of Pathway Analysis

5

The table below shows the detailed results from the pathway analysis. Since we are testing many pathways at the same time, the statistical p values from enrichment analysis are further adjusted for multiple testings. In particular, the Total is the total number of compounds in the pathway, the Hins is the actually matched number from the user uploaded data; the Rawe p is the original p value eakulated from the enrichment analysis; the Hoin p to the p values adjusted by Holm-Bonderrom method; the FDR p is the p value adjusted using Fake Discovery Rate; the Impact is the pathway impact value eak-matching the state of the

Calastone matcholiam	Total Crapt		Raw p	-log(p)	Rein situst		0.13
	41 50	1	1.212-07	8.852+00 6.252+00	8.652-06	8.8812-08 1.4312-05	
Starch and success metabolism			5.022-01		2.8110-05		0.05
Gipcolysis or Giuccheogenesis	21	4	1.472-06	5.8310+00	7.1810-05	1.9832-05	0.18
Pyrovate metabolism	22	4	1.602-06	5.0010+00	7.6512-05	1.9832-05	0.42
Arrino sugar and nucleotide sugar	55	3	1.942-06	5.7132 + 00	8.1315-05	1.9832-05	D.88
netabolism							
Propagnate metabolism	35	4	2.578-06	5.598+00	1.1815-04	2.1835-05	D.02
Valine, lettine and isoleurine biosynthe-	27		4.022-06	5.408+00	1.812-04	2.5335-05	0.15
ala -							
Sulfur metabolism	15	1	4.025-06	5.408+00	1.811-04	2.533-05	D.82
Phenylalanine metabolism	45		4.952-06	5.318+00	1.128-04	2.5320-05	D.83
inositei phosphate meishollem	29	1	4.962-06	5.308+00	2.128-04	2.5332-05	D. 34
Pentose phosphaie pathway	32	2	5.578-00	5.258+00	2.293-04	2.5835-05	D.88
Arginine and proline metabolism	11		8.112-00	5.0984+00	3.2435-04	3.2235-05	D.06
Tyronize metabolism	T6	5	6.222-06	5.0984+00	3.2415-04	3.2235-05	D.11
Tautize and hypotaurine metabolism	20	2	1.002-05	4.9922+00	3.9215-04	3.1112-05	D.35
Valize, leucize and isoleucize degrada-	40	2	1.108-05	4.94R + 00	4.2535-04	3.9210-05	D.02
tion.							
Olycine, serine and thremine metabolism	45		1.468-05	4.848+00	5.2632-04	4.6635-05	D.45
Selectarizo add metabolism	22	1	2.000-05	4.708+00	7.002-04	8.0035-05	D.00
Butanonie metabolism	40	5	2,212-05	4.648+00	7.8732-04	6.5632-05	0.13
Alazine, aspertate and glutamate	24		2,466-05	4.412 + 00	8.123-04	6.6132-05	D.26
metabolism		-					
Nicotinate and nicotinantide metabolism	44	5	2.478-05	4.452+00	1.118-02	8.8435-05	0.04
Pentose and glucuronate interconversions	5.2		2,718-05	4.4312 + 00	1.1535-02	8.0135-05	D.02
Antinoscyl-tŘNA biosynthesis	75	12	2,860-05	4.412+00	1.1715-02	8.0135-05	D.11
Citrate rede (TCA rede)	20	1.1	4.068-05	4.3922+00	1.1815-02	8.0132-05	D.33
Olyczylate and dicarboxylate	50		4.358-05	4.368+00	1.228-03	8.212-05	0.17
neuloisn		-	1. Hold - Col				
Methane metabolism	34		4.518-05	4 10010-010	1.2235-03	8.2132-05	0.16
Nitrogen metabolism	29		7.518-05	4.352+00 4.122+00	1.9512-02	1478-04	0.01
Phensisianine, istorine and tryptophan	27	2	9.052-05	4.048+00	2.2615-02	1.7035-04	D.81
biossathesia	-		***********				
Rictin metabolism	11	1	9.020-05	4.032 + 00	2.2632-02	1.7023-04	0.00
Treptophen metabolism	79	i	9.968-05	4.008+00	2.293-02	1.753-04	0.11
Synthesis and degradation of lottone bod-		- i	1,128-04	3.958+00	2,501-02	1.922-04	0.00
in the second second second second second	*	•	1.100-04	1.040 T 10		1.10.07.18	
Assorbate and alderate metabolism	45		1,208-04	3.928+00	2.5335-03	1.9532-04	0.12
Casteine and methicoine metabolism	58	1	1.902-04	3.712+00	3,9212-02	3.1315-04	0.12
	28	1	2,352-04	3.022+00	4.523-03	3.593-04	0.02
Ubiquinons and other terpenoid-quinons	2.0		2.388-04	3.026+00	0.3289-02	3.5935-04	0.00
biceynthesis	18		2,400-04		4.528-03	3.593-04	0.00
Cyshoamino soid metabolism		4		3.428+00			
Clutathione metabolism	35	2	3.478-04	3.452+00	5.8910-03	5.051-04	0.00
Lysine degradation	47	2	4.448-04	3.358+00	7.1010-02	6.2935-04	D.15
Sphingolipid metabolism	25	1	4.018-04	3.348+00	7.1010-02	6.262-04	D.88
Terpenoid backbone biosynthesis	22	1	4.500-04	3.318+00	7.1010-02	8.5235-04	D.88
Process and manage metabolism	45	1	5.388-04	3.2730 + 00	7.1010-02	7.0316-04	D.03
Panicihenste and CoA bicsynthesis	27	4	T.44E-D4	3.138+00	8.9210-02	8.4535-04	D.35
D-Gloismins and D-glotamate	11	2	8.51R-D4	3.078+00	8.3615-02	1.0610-02	D.03
metabolism							
Thismine metabolism	24	1	9.196-04	3.048+00	9.3615-02	1.128-03	D.88
Purine metabolism	92		1.112-09	2.9512+00	1.002-02	1.928-02	D.81
Histicine metabolism	и	2	1.162-09	2.938+00	1.002-02	1.2515-02	D.15
Lysine biosynthesis	32	2	1.452-09	2.832+00	1.0415-02	1.6615-02	D.18
Perphyrin and shlorophyll metabolism	104	2	1.042-09	2.7832 ± 0.0	1.0415-02	1.5210-02	D.00
Primary bile and biosynthesis	47	2	2.5882-09	2.5932 + 00	1.2915-02	2.5035-02	D.82
Vitamin 26 metabolism	32	2	3,200,00	2.432+00	1.318-02	3.4715-02	D.84
Pyrimidine metabolism	60	- i	4.258-09	2.3732 + 00	1.313-02	4.4235-02	0.07
bets-Alazine metabolism	25	i i	4.458-00	2.358+00	1.315-02	4.5735-02	D.00
Giyoscophospholigid metabolism	29	i i	6.196-00	2.211 + 00	1.312-02	8.1935-02	D.04

б

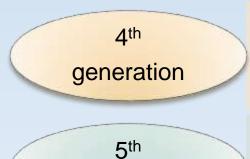
MetPA summary

- Combine statistical analysis and topological analysis
 - Results are more close to manual identification
- Highly interactive visualization system
 - allows easy hierarchical navigation within a large amount of information

Public Databases

- HMDB
- DrugBank
- SMPDB
- T₃DB

	Browse	Search	About	Downloads	Contact Us
	Search:	Search T3DB	Se	arch [Advanced]	
toxin target informat pesticides, drugs, at 800 toxin, toxin tar chemical properties has been extracted literature. The focus T3DB, in which toxin is also fully searcha	ion. The database c nd food toxins, whic get associations. E and descriptors, toy form over 5600 s of the T3DB is on p and toxin target re- able and supports e XServe in the Wish	urrently houses over 2 ch are linked to over 1 Each toxin record (To xicity values, molecula sources, which includ providing mechanisms cords are interactively extensive text, sequer ant Lab on the Univer	300 toxins described 300 corresponding to xCard) contains ove ir and cellular interac e other databases, of toxicity and targe linked in both directio ce, chemical structu sity of Alberta campu	ombines detailed toxin d by over 34 200 synonyr xin target records. Alto r 50 data fields and ho tions, and medical infor government documents t proteins for each toxin ins, makes it unique fro ire, and relational query is, and consists of a LII odelled after and closel	ns, including pollutants gether there are over 33 Ids information such as mation. This information s, books, and scientifin . This dual nature of th n existing databases. I searches. The T3DB is MS built using the Rub
Metabolome Databa interaction prediction and accessibility of images, descriptive f	<u>se (HMDB)</u> and <u>Dr</u> n, and general toxin the T3DB make it īelds and tables ma	hazard awareness by a valuable resource f y be downloaded here.	the public, making i or both the casual u	nclude toxin metabolis t applicable to various fi ser and the advanced m cal Sciences, <u>University</u>	m prediction, toxin/dru, elds. Overall, the variet esearcher. All of T3DB ¹


Summary

1st & 2nd generation

 MetaboAnalyst: general data processing & analysis

3rd generation

 MSEA: Metabolite set enrichment analysis

generation

 MetPA: Metabolomics Pathway Analysis

• Integrate with other omics data

Acknowledgement

• Dr. David Wishart

- Alberta Ingenuity Fund (AIF)
- The Human Metabolome Project (HMP)
- University of Alberta, Canada