Data Analysis & Biomarker Discovery

MetaboAnalyst 2.0 & ROCCET

Jianguo Xia, PhD University of Alberta, Canada

Outline

- Introduction (updates) of two free web application
 - MetaboAnalyst 2.0
 - ROCCET
- Background & basic concepts
- Screenshot tutorials
- Live demo (if we have time)

Metabolomic Data Analysis

MetaboAnalyst (www.metaboanalyst.ca)

	MetaboAnaly	st 2.0 prehensive tool suite for metabolom	ılıc data analysis	\bigcirc
Home Overview Data Farmata EAQ3 Iutonals Besources Update History Uner Statistics About	Welcome <u>click here t</u> News & Updates Updated compose Updated complex Pathway analysi Added a new mo (01/02/2012) All impartant ima or PDF format. J Please Cite: Xia, J., Mandal, R., Sim for metabolomic data an Xia, J., Psychogios, N., and interpretation Nucl	Ind database; (06/23/2012) *** inn heatmap analysis; (05/27/2012) *** s now supports Mesorhizobium kti and Gallus gallus (cl dule for data quality check - available at <u>QC and Other I</u> ages can be reproduced in high resulution (150/300.600 (ust click the exproduced in high resultion (150/300.600 (ust click the expression (150/300.600 (ust click the ex	ticken), (05/10/2012) ⁴⁰ bilities tab on the data u OP() in PNG, TIFF, Past OP() in PNG, TIFF, Past StoAnalyst 2.0 - a comp OP(2 web server for metabolor	pload page, Script, SVG, Read more rehensive server.
Data rocessing		Data analysis		Data interpretation

р

MetaboAnalyst Overview

- Raw data processing
- Data reduction & statistical analysis
- Functional enrichment analysis
- Metabolic pathway analysis
- Quality control analysis

Data processing overview

- Supported data formats
 - Concentration tables
 - Peak lists
 - Spectral bins
 - Raw spectra (* not recommended)

Example Datasets

Data Processing

Purpose: to convert various raw data forms into data matrices suitable for statistical analysis

Data Upload

ûHome	Statistical Analysis Enrichment Analysis Pathway Analysis Time Series Other Utilities
Steps	1) Upload your data (Data Format)
Upload	
 Processing Statistics 	Comma Separated Values (.csv) :
 Enrichment 	Data type : O Concentrations C Spectral bins C Peak intensity table
▶ <u>Pathway</u>	Format: Samples in rows (unpaired)
<u>Time Series</u>	Data file : C:\Documents and Settings\JeffXia\Deskto Browse
Metabolites	
- Download	Zipped Files (.zip) : For WinZip 12.x, choose "Legacy compression (Zip 2.0 Compatible)"
Log out	
	Data type: O NMR peak list O MS peak list O MS spectra
	Data : 2 Browse Submit
	Pairs : Browse (required for paired comparison)

Alternatively ...

2) Try our test data :	(You can download these data <u>here</u>)
------------------------	--

Data Type	Description
Concentrations <u>Tutorial Report</u>	Metabolite concentrations of 77 urine samples from cancer patients measured by 1H NMR (<u>Eisner R, et al.</u>). Group 1- cachexic; group 2 - control
○ Concentrations	Metabolite concentrations of 39 rumen samples measured by proton NMR from dairy cows fed with different proportions of barley grain (<u>Ametaj BN, et al.</u>). Group label - 0, 15, 30, or 45 - indicating the percentage of grain in diet.
O NMR spectral bins Tutorial Report	Binned 1H NMR spectra of 50 urine samples using 0.04 ppm constant width (<u>Psihogios NG, et al.</u>) Group 1- control; group 2 - severe kidney disease.
Ö NMR peak lists	Peak lists and intensity files for 50 urine samples measured by 1H NMR (<u>Psihogios NG, et al.</u>). Group 1- control; group 2 - severe kidney disease.
C Concentrations (paired) Tutorial Report	Compound concentrations of 14 urine samples collected from 7 cows at two time points using 1H NMR (unpublished data). Group 1- day 1, group 2- day 4.
O MS peak intensities	LC-MS peak intensity table for 12 mice spinal cord samples (<u>Saghatelian et al.</u>). Group 1- wild-type; group 2 - knock-out.
O MS peak lists	Three-column LC-MS peak list files for 12 mice spinal cord samples (<u>Saghatelian et al.</u>). Group 1- wild-type; group 2 - knock-out.
C LC-MS spectra Tutorial Report	NetCDF spectra of 12 mice spinal cord samples collected by LC-MS (<u>Saghatelian et al.</u>). Group 1- wild-type; group 2 - knock-out.
O GC-MS spectra	NetCDF spectra collected by GC-MS. <u>This is a dummy data set for testing</u> <u>spectra processing only. Each group is a triplicate of a single spectrum</u> . Group 1- Sunflower oil, group 2- Olive oil.

Submit

Data Integrity Check

Data Integrity Check

Details:

- 1. Checking the class labels at least three replicates are required in each class.
- 2. If the samples are paired, the pair labels must conform to the specified format.
- 3. The data (except class labels) must not contain non-numeric values.
- 4. Compound concentration or peak intensity values should not be negative.

Skip

Missing value imputation

Upload Processing Pre-process Name check Conc. check Data check Missing value Data filter Data editor Color picker Normalization Statistics Enrichment Pathway Time Series Peak search Metabolites Download

Log out

Steps

Data Normalization

Normalization Result

Quality Control

- Dealing with outliers
 - Detected mainly by visual inspection
 - May be corrected by normalization
 - May be excluded
- Dealing with missing values
- Noise reduction

Visual Inspection

• What does an outlier look like?

Finding outliers via PCA

Finding outliers via Heatmap

Functions for Quality Check

Comparing the Agreement between Two Measurements

In metabolomics researches, different protocols are often explored to find to best approach. The function allows you to visually compare the agreement between two measurements and to detect outliers.

Detecting (and Correcting) for Time Drift

The method aims to detect if temporal drift is present in the measurements collected over a long period of time. User can adjust the time window to calculate pair-wise p values between data points measured at each time frame. Finally, the method allows users to correct the drift using the LOWESS correction.

Checking Batch Effects for Large Number of Samples

The methods aims to detect the batch effect in large scale metabolomics studies with a **randomized experiment design**. The method allows high-level visualization of samples in each batch using scatter plot, boxplot, heatmap and principal component analysis (PCA).

Checking against reference concentrations in HMDB

The methods compares the measured concentration values in user data against the normal reference values stored in HMDB. Therefore, the comparison is only meaningful for **human biofluid samples (blood/urine/CSF)**. The approach is useful to examine sample qualities, wrong labels, etc.

Quality Check Module

10 . PC1 (30.8%)

29

2

8

-10

Outlier Removal

P080

۸

Data Filtering

- Characteristics of noise & uninformative features
 - Low intensities
 - Low variances (default)
 - Interquantile range (IQR)
 - Coefficient of variation (CV)
 - Standard deviation (SD)
 - O Mean intensity value
 - O Median intensity value
 - O None

Submit

Noise Reduction

Data filtering

The purpose of the data filtering is to identify and remove variables that are unlikely to be of use when modeling the data. No phenotype information are used in the filtering process, so the result can be used with any downstream analysis. This step is strongly recommended for chemometrics datasets (i.e. spectral binning data) with large number of variables, many of them are from baseline noises. <u>Filtering can usually improve the results</u>. For details, please see the paper by <u>Hackstadt, et al</u>.

Non-informative variables can be characterized in two groups:

- Variables of very small values these variables can be detected using mean or the robust estimate median which is not affected by extreme values or outliers;
- Variables that are near-constant throughout the experiment conditions these variables can be detected using standard deviation (SD) or the robust estimate interquantile range (IQR). The coefficient of variation (CV) (CV=mean/SD) is another useful variance measure independent of the mean.

The following empirical rules are applied during data filtering:

Number of Variables	Variables Filtered
< 250	5%
250 - 500	10%
500 - 1000	25%
> 1000	40 %

Please note, in order to reduce the computational burden to the server, the maximum allowed number of variables is 5000. If over 5000 variables were left after filtering, only the top 5000 will be used in the subsequent analysis.

Missing values

Step 1. Remove features with too many missing values :

Automatically remove variables with > 50 (%) of missing values.

Manually specify which variables to remove (Click here)

Step 2: Calculate the remaining missing values :

- O Exclude variables with missing values
- C Replace by a small value (half of the minimum positive value in the original data)
- O Replace by the mean 🔽 of each column.

C Impute missing values by	KNN 🔽	
	KNN	
	PPCA	
	BPCA	
	SVD Impute	

Dimension Reduction & Statistical Analysis

Common tasks

- To identify important features;
- To detect interesting patterns;
- To assess difference between the phenotypes
- To facilitate classification / prediction

Select an analysis path to explore :

Univariate Analysis

Fold Change Analysis, t-Tests, and Volcano plat (two-group only) One-way ANOVA and Correlation Analysis

Multivariate Analysis

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Significant Feature Identification

Significance Analysis of Microarray (and Metabolites) (SAM) Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis

Hierarchical Clustering - Dendrogram and Heatmap

Partitional Clustering - K-Means and Self Organizing Map (SOM)

Classification & Feature Selection

Random Forest

Support Vector Machine (SVM) (two-group only)

ANOVA

View Individual Compounds

Overall correlation pattern

High resolution image

Image Center

This page allows you to reproduce the image on the previous page in various formats and resolutions. Note, for heatmap image, the size will always be full page.

Template Matching

- Looking for compounds showing interesting patterns of change
- Essentially a method to look for linear trends or periodic trends in the data
- Best for data that has 3 or more groups

G	Home	Correlation	Pattern Hunter			
<u>Ste</u>	<u>ps</u>	Correlation a	nalysis can be performed	d either against a given feature or against a given pattern. The pattern is specified as a series of nu		
	<u>Upload</u>	by "-". Each	number corresponds to t	he expected expression pattern in the corresponding group. For example, a 1-2-3-4 pattern is used		
Þ	Processing features that increase linearly with time in a time-series data with four time points (or four groups). The order of the groups is given a					
•	Statistics	predefined p	atterns.			
	 Fold change 					
	— <u>T-test</u>	Se	lect a distance measu	re: Pearson r		
	 <u>Volcano plot</u> <u>ANOVA</u> 	Se	lect a feature:	1,3-D Submit		
	- Correlations	Or	select a predefined p	attern 1-2-3-4 🔽 Submit		
	 <u>PatternHunter</u> <u>PCA</u> 	Or	define your own patte	0-15-30-45 1-2-3-4 4-3-2-1 Submit		
	PLSDA			1-2-3-2 3-2-1-2		
	- SAM					

Template Matching (cont.)

PCA Scores Plot

PCA Loading Plot

PLS-DA Score Plot

Evaluation of PLS-DA Model

- PLS-DA Model evaluated by cross validation of Q² and R²
- More components to model improves quality of fit, but try to minimize this value
- 3 Component model seems to be a good compromise here
- Good R²/Q² (>0.7)

	10.100.0	30 10 10	Loadings	Cross Validation	Var. Importance	Permutation	Daters	
Select optimal number of components for classification								
Usernan number of components: Cross-validation (CV) method:			N 5					
			10-104	CV MLCCCV- MAIN	IN IL COR-HEDRON			
Tele .	ction based or		120			But	1.0	
				-				
					Vev details	15		
	-			177		El Actur	NY .	
		-				1 02		
	. 0						_	
	1.							
	1 .	1						
	÷.,							
	* ô	1						
	72							
	0.2							
			-					
	Selet Uni Der	Select optimal in Unimum number Cross-relation (Delection based or 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Select optimal number of or Momun number of component Cross-relation (Cr) method: Belection based on	Select optimal number of components Maximum number of components: Cross-relation (Cr) method: Belection based on O	Select optimal number of components for classification their unit number of components in classification Create-relation (CA) method: Selection taxed on	Select optimal number of components for classification Maximum number of components in classification Crease-relations (CO) method: Belection tased on University Selection tased on University	Select optimal number of components for classification Meimum number of components to classification Crease-relations (CO) method: Selection tased on	

Important Compounds

Model Validation

Heatmap Visualization

		MetaboAnalyst 2.0 a comprehensive tools	suite for metabol	omic data analysis
1	Home			About Hierarchical Clustering
<u>Steps</u>		Dendrogram Heatmap		
Г	- <u>Upload</u>			
Þ	Processing	Distance Measure	Pearson	
	<u>Statistics</u> — <u>Fold change</u>	Clustering Algorithm	Ward	
	- <u>T-test</u>	Color contrasts	Red / Green 💌	Submit
	— <u>Volcano plot</u> — <u>ANOVA</u>	🔽 Do not re-organize	Rows / Samples	
	 <u>Correlations</u> <u>PatternHunter</u> 	Display top 25 features selected by	T-test / ANOVA	
	- PCA			

Heatmap Visualization (cont.)

Download Results

Home

Result Download

Steps

- <u>Upload</u>
- Processing
- <u>Statistics</u>
- Enrichment
- Pathwaγ
- Time Series

<u>Download</u>

- Peak search
- Metabolites
- Quality control
- <u>Loq out</u>

The "Download.zip" contains all the files in your home directory. These data will remain in the server for 72 hours before being deleted automatically.

Download.zip	heatmap_4_dpi72.png
Analysis_Report.pdf	plsda_score.csv
anova_posthoc.csv	pls_score2d_0_dpi72.png
pls_imp_0_dpi72.png	pls_pair_0_dpi72.png
norm_0_dpi72.png	pca_score.csv
heatmap_2_dpi72.png	data_processed.csv
cow_diet.csv	heatmap_1_dpi72.png
pca_score2d_0_dpi72.png	pca_loading_0_dpi72.png
heatmap_0_dpi72.png	pls_loading_0_dpi72.png
correlation_pattern.csv	pca_score3d_0_dpi72.png
pls_perm_0_dpi72.png	plsda_loadings.csv
pca_loadings.csv	heatmap_3_dpi72.png
plsda_vip.csv	pls_cv_0_dpi72.png
data_normalized.csv	pls_score3d_0_dpi72.png
data_original.csv	pca_scree_0_dpi72.png
pca_biplot_0_dpi72.png	ptn_1_dpi72.png
pca_pair_0_dpi72.png	

Analysis Report

2.2 Correlation Analysis

Correlation analysis can be used to identify which features are correlated with a feature of interest. Correlation analysis can also be used to identify if certain features show particular patterns under different conditions. Users first need to define a pattern in the form of a series of hyphenated numbers. For example, in a time-series study with four time points, a pattern of of 1-2-3-4 is used to search compounds with increasing the concentration as time changes; while a pattern of 3-2-1-3 can be used to search compounds that decrease at first, then bonnee back to the original level.

Figure 3 shows the important features identified by correlation analysis. Table 3 shows the details of these features.

Table 3: Important features identified by Pattern search using correlation analysis

	Compounds	correlation	t-stat	p-value	FDR
1	Butyrate	-0.61282	18932	3.4067e-08	0.00080058
2	Isobutyrate	-0.89758	15784	5.9015e-05	0.00092458
3	S-PP	-0.87238	15535	0.00014083	0.0016824
4	Acetate	-0.55453	18389	0.00024911	0.0023416
8	3-HB	-0.41943	14024	0.007882	0.041057
6	Leovalerate	-0.39861	13818	0.011986	0.056193
7	Lysine	-0.24401	12291	0.13439	0.30381
8	Methanol	-0.24257	19977	0.13878	0.30381
9	Ferulate	-0.22929	12145	0.16028	0.32783
10	Fumarate	-0.21966	12850	0.17906	0.33395
11	Histidine	-0.2169	12023	0.18474	0.33395
12	Propionate	-0.21018	11956	0.19912	0.34661
13	Maltone	-0.2003	11859	0.22148	0.37177
14	Acetoacetate	-0.17772	11638	0.27907	0.39748
15	Choline	-0.11886	11054	0.47111	0.65124
16	Tyrosine	-0.10857	10933	0.51847	0.67689
17	PÅG	-0.079788	10668	0.62921	0.79927
18	3-HP	-0.074918	10620	0.65035	0.80438
19	Formate	-0.051347	10387	0.75623	0.84626
20	Aspartate	-0.031981	10198	0.84674	0.86515
21	Caffeine	0.011841	9763	0.94297	0.94297
22	Ribose	0.038945	9495.1	0.81387	0.85004
22	1.8-D	0.043185	9453.6	0.79419	0.84834
94	Succinate	0.04×04	9435	0.78542	0.84834
98	Channe	0.057544	9311 A	0.72787	0.88499
30	Cadavarine	0.060643	8.0800	0.71389	0.88490
97	Phenylacetate	0.063742	9250.2	0.69956	0.83439
98	Hyperanthine	0.10911	880.2	0.50847	0.67689
29	Ethanol	0.18304	8071.6	0.96471	0.3888
30	NDMA	0.18499	8063	0.25075	0.3888
31	Proline	0.18713	8031.9	0.05300	0.3888
32	Glutamate	0.19334	7969.8	0.23920	0.38819
33	Benzuate	0.21978	7708.6	0.17884	0.33395
34	Valerate	0.03036	7515.1	0.14921	0.30381
25	Chevand	0.96901	7018.3	0.006560	0.02888
36	Chrise	0.05064	71073	0.053533	0.91819
97	Nicotinate	0.95419	1065	0.028511	0.91708
38	Mathylamine	0.05004	7094.9	0.07431	0.91708
30	Indeurine	0.30355	6581	0.060303	0.18895
40	Xanthine	0.30454	6561.3	0.058555	0.18895
41	Dimethylamina	0.33998	6500.1	0.038396	0.13856
40	Lancina	0.35149	6407.9	0.009054	0 11068
48	Valine	0 3500	6116 7	0.018744	0.071541
44	Lactate	0.40384	N600 N	0.0071700	0.041057
45	Uracil	0.45120	5417	0.0035008	0.008137
46	Findetonia	0.00141	4006.1	0.0011471	0.0080889
4	A loging	0.00000	Gent C	0.00214/1	0.0009003
47	Alahins	0.02028	3761.8	2.03378-08	0.00080058

2.5 Hierarchical Clustering

In (aggiomerative) herarchical cluster analysis, each sample begins as a separate cluster and the algorithm proceeds to combine them until all samples belong to one cluster. Two parameters need to be constdered when performing herarchical clustering. The first one is similarity measure - Euclidean distance, Pearson's correlation, Spearman's rank correlation. The other parameter is clustering algorithms, including average inhage (clustering to the observations), complete linkage (clustering uses the farthest pair of observations between the two groups), single linkage (clustering uses the closest pair of observations) and Ward's linkage (clustering to minimize the sum of squares of any two clusters). Heatmap is othen presented as a visual aid in addition to the clearlorgum.

Hierachical dustering is performed with the factust function in package stat. Figure 17 shows the clustering result in the form of a dendrogram. Figure 18 shows the clustering result in the form of a heatmap.

Figure 17: Clustering result shown as heatmap (distance measure using pearson, and clustering algorithm using ward).

Metabolite Set Enrichment Analysis (MSEA)

Enrichment Analysis

- Purpose: To test if there are some biologically meaningful groups of metabolites that are significantly enriched in your data
- Biological meaningful groups
 - Pathways
 - Disease
 - Localization
- Currently, only supports human metabolomic data

MSEA

- Accepts 3 kinds of input files
- 1) list of metabolite names only (ORA)
- 2) list of metabolite names + concentration data from a single sample (SSP)
- 3) a concentration table with a list of metabolite names + concentrations for multiple samples/patients (QEA)

The MSEA approach

Start with a compound List

Upload Compound List

ûHome	Statistical Analysis	Enrichment Analysis	Pathway Analysis	Time Series	Other Utilities	
Steps		-				Dther Utilities
Steps Upload Processing Statistics Statistics Funchment Pathway Time Series Peak search Metabolites Download Log out	▼ A list of comp	ound names (over repres Please enter a Acetoacetic acid Beta-Alanine Creatine Dimethylglycine Fumaric acid Glycine Homocysteine L-Cysteine L-Solucine L-Serine L-Serine L-Threonine L-Tyrosine L-Valine Phenylpyruvic a Propionic acid Pyruvic acid Sarcosine Input Type: Con	sentation analysis)	pound list:	s)	
			Submit		-,	

Compound Name Standardization

Compound Label Standardization:

PLease note:

- · Query names in normal white indicate exact match marked by "1" in the download file;
- Query names highlighted in yellow indicate approximate matches (for compound name matches) marked by "2" in the downloaded file. Users should manually select the correct match by clicking the <u>View</u> link of the corresponding compounds. Otherwise, the first match will be used;
- · Query names highlighted in red indicate no match marked by "0" in the downloaded file;
- · Greek alphabets are not recognized, they should be replaced by English names (i.e. alpha, beta)

Query	Match	HMDB	PubChem	KEGG	Details
Acetoacetic acid	Acetoacetic acid	HMDB00060	96	C00164	
Beta-Alanine	Beta-Alanine	HMDB00056	239	C00099	
Creatine	Creatine	HMDB00064	586	C00300	
Dimethylglycine	Dimethylglycine	HMDB00092	673	C01026	
Fumaric acid	Fumaric acid	HMDB00134	723	C00122	
Glycine	Glycine	HMDB00123	750	C00037	
Homocysteine	Homocysteine	HMDB00742	778	C05330	
L-Cysteine	L-Cysteine	HMDB00574	5862	C00097	
L-Isolucine	L-Isoleucine	HMDB00172	791	C00407	View
L-Phenylalanine	L-Phenylalanine	HMDB00159	6140	C00079	
L-Serine	L-Serine	HMDB00187	5951	C00065	
L-Threonine	L-Threonine	HMDB00167	6288	C00188	
L-Tyrosine	L-Tyrosine	HMDB00158	6057	C00082	
L-Valine	L-Valine	HMDB00883	1182	C00183	
Phenylpyruvic acid	Phenylpyruvic acid	HMDB00205	997	C00166	
Propionic acid	Propionic acid	HMDB00237	1032	C00163	
Pyruvic acid	Pyruvic acid	HMDB00243	1060	C00022	
Sarcosine	Sarcosine	HMDB00271	1088	C00213	

Name Standardization (cont.)

Details

Query Name: L-Isolucine

	Matched Name	HMDB	PubChem	KEGG
۲	L-Isoleucine	HMDB00172	791	C00407
0	L-Alloisoleucine	HMDB00557	99288	
0	L-gamma-glutamyl-L-isoleucine	HMDB11170	NA	
0	Angiotensin IV	HMDB01038	123814	C15849
0	None of the above			

ОК	Cancel
----	--------

Select a Metabolite Set Library

ſûHome	Set parameters for enrichment analysis:
Steps	Please select a metabolite set library:
	 Pathway-associated metabolite sets This library contains 88 metabolite sets based on normal metabolic pathways. Disease-associated metabolite sets (Blood) This library contains 416 metabolite sets reported in human blood. Disease-associated metabolite sets (Urine) This library contains 346 metabolite sets reported in human urine.
 Peak search Metabolites <u>Download</u> <u>Log out</u> 	 Disease-associated metabolite sets (CSF) This library contains 124 metabolite sets reported in human cerebral spinal fluid (CSF). SNP-associated metabolite sets This library contains 4,500 metabolite sets based on their associations with the detected single nucleotide polymorphisms (SNPs) loci.
	 Predicted metabolite sets This library contains 912 metabolic sets that are predicted to be changed in the case of dysfunctional enzymes using genome-scale network model of human metabolism. Location-based metabolite sets This library contains 57 metabolite sets based on organ, tissue, and subcellular localizations. Self-defined metabolite sets Click the link above to upload your own customized metabolite set library

Result

Result (cont.)

Metabolite Set	Total	Hits	Expect	P value	Holm P	FDR	Details
GLYCINE, SERINE AND THREONINE METABOLISM	26	9	0.567	2.74E-10	2.19E-8	2.19E-8	View
PROTEIN BIOSYNTHESIS	19	6	0.415	9.93E-7	7.85E-5	3.97E-5	View
PHENYLALANINE AND TYROSINE METABOLISM	13	5	0.284	3.15E-6	2.46E-4	8.4E-5	View
METHIONINE METABOLISM	24	5	0.524	8.98E-5	0.00691	0.0018	View
AMMONIA RECYCLING	18	3	0.393	0.00581	0.441	0.0774	View
PROPANOATE METABOLISM	18	3	0.393	0.00581	0.441	0.0774	View
CYSTEINE METABOLISM	8	2	0.175	0.0117	0.863	0.133	View
GLUTATHIONE METABOLISM	10	2	0.218	0.0183	1.0	0.162	View
BETAINE METABOLISM	10	2	0.218	0.0183	1.0	0.162	View
ASPARTATE METABOLISM	12	2	0.262	0.0261	1.0	0.209	View
VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	36	3	0.785	0.0397	1.0	0.288	View
TYROSINE METABOLISM	38	3	0.829	0.0456	1.0	0.304	View
UREA CYCLE	20	2	0.436	0.0677	1.0	0.417	View
CITRIC ACID CYCLE	23	2	0.502	0.0868	1.0	0.496	View
CATECHOLAMINE BIOSYNTHESIS	5	1	0.109	0.105	1.0	0.536	View
ARGININE AND PROLINE METABOLISM	26	2	0.567	0.107	1.0	0.536	View
ALANINE METABOLISM	6	1	0.131	0.124	1.0	0.585	View
TAURINE AND HYPOTAURINE METABOLISM	7	1	0.153	0.144	1.0	0.638	View
BUTYRATE METABOLISM	9	1	0.196	0.181	1.0	0.758	View
PANTOTHENATE AND COA BIOSYNTHESIS	10	1	0.218	0.199	1.0	0.758	View
KETONE BODY METABOLISM	10	1	0.218	0.199	1.0	0.758	View
GLUCOSE-ALANINE CYCLE	12	1	0.262	0.234	1.0	0.851	View
BETA-ALANINE METABOLISM	13	1	0.284	0.251	1.0	0.873	View
SPHINGOLIPID METABOLISM	15	1	0.327	0.284	1.0	0.908	View
MITOCHONDRIAL ELECTRON TRANSPORT CHAIN	15	1	0.327	0.284	1.0	0.908	View

Next

The Matched Metabolite Set

Single Sample Profiling

Single Sample Profiling (cont.)

A list of comp	ound names (over represe	entation analysis)			
▼ A list of comp	ounds with concentration	values (single sample	profiling)		
			, p. c		
	Enter your data b	elow (two-colum	ın data):		
	 compound labels and 	concentration value	s separated by ta	b	
	L Inclusion 0.24				
	L-Isolecine 0.34 Eumaric acid 0.47	-			
	Acetone 0.58				
	Succinic acid	9.4			
	1-Methylhistidine	9.6			
	L-Asparagine	19.62			
	3-Methylhistidine	9.7			
	L-Threonine 93.19				
	Creatine 720				
	cis-Aconitic acid	14.39			
	L-Tryptophan	35.78			
	L-Carnitine 16.01				
	L-Serine 17.32				
	L-Tyrosine 67.51				
	L-Alanine 219.02	2			
	L-Fucose 20.37	•			
	Compound label:	Compound names	-		
	Biofluid (unit)	Urine (umol/mmol_c	reatinine) 💌		

Concentration Comparison

Comparison with Reference Concentration

Note: reference concentrations are in the form of **mean(min - max)** format. In cases where the ranges were not reported in the original literature, the min and max were calculated using the 95% confidence intervals. In the *Comparison* column, **H**, **M**, **L** means **higher**, **medium (within range)**, **lower** compared to the reference concentrations. Click the **Image Icon** link to see a graphical summary for the comparisons.

Compound	Concentration	Reference Concentrations	Comparison	Detail	Include
L-Isoleucine	0.34	1.579 (0.789 - 2.368); 0.94 (0.27 - 1.61); 3.75 (1 - 6.5); 3 (1.5 - 4.5); 1.8 (0.8 - 2.8)	М	_	
Fumaric acid	0.47	10.4 (2.8 - 53.7); 0.5 (0.1 - 1.7); 1 (0 - 2); 0.95 (0.02 - 1.88); 0.8 (0.1 - 1.7); 10.7 (0.1 - 28.2); 4.8 (0 - 35.2); 5 (1 - 33.5)	М	_	
Acetone	0.58	4.2 (0.98 - 15.3); 0.92 (0.2 - 2.8); 320 (103 - 1290); 20 (2 - 180); 15.3 (2 - 120)	М	_	
Succinic acid	9.4	14.4 (9.5 - 19.3); 3.8 (1.25 - 6.7); 12.6 (0.47 - 24.73); 14.48 (11.28 - 17.68); 9.9 (4.9 - 14.9); 39 (37 - 41); 197.2 (29.4 - 486.2); 185.4 (6 - 342.6); 7.7 (1.9 - 20); 11.6 (4 - 27.3); 8.25 (0.5 - 16)	м	-	
1- Methylhistidine	9.6	2.3 (0 - 7.4); 33.6 (0 - 70); 28.1 (0 - 59.9); 30 (0 - 73); 45.5 (3.9 - 87.1); 1.3 (0 - 4.06); 4.6 (1.9 - 7.3); 48.1 (0 - 99.6); 15.9 (0 - 35.4)	м	_	
L-Asparagine	19.62	35 (16.4 - 57.2); 9.211 (3.289 - 15.1); 0.96 (0.31 - 1.81); 10 (4.8 - 16.32)	М	_	
3- Methylhistidine	9.7	42.76 (19.92 - 65.6); 15.1 (3.9 - 26.3); 12.5 (8.3 - 16.7)	М	_	
L-Threonine	93.19	38.2 (10.82 - 61.58); 12.7 (4.934 - 20.4); 1 (0.18 - 2.4); 4.9 (2.4 - 7.4); 16 (7 - 25); 18 (8.4 - 27.6)	н	_	
Creatine	720	48 (9 - 135); 113 (0 - 654); 28 (5 - 95); 187 (124 - 210); 212 (0 - 5000); 450 (0 - 10000)	М	_	

Concentration Comparison (cont.)

Quantitative Enrichment Analysis

Home	Statistical Analysis	Enrichment Analysis	Pathway Anal	lysis Time Series	Other Utilities					
Stone -]				1				
steps										
Upload	A list of comp	ound names (over repre	sentation analysi	s)						
 Processing 	A list of comp	ounds with concentration	n values (single s	sample profiling)						
Statistics	A concentration	A concentration table (quantitative enrichment analysis)								
Enrichment										
 Time Series 	Upload yo	Upload your concentration data (.csv)								
Peak search	(2) Format									
Metabolites										
- Download			Brows	e						
 Log out 										
	C	compound Label Type	:	Compound names	s 💌					
	F	henotype Label:		Discrete (Classif	fication) 💌					
			9	Submit						
	Try our te	est data:								
	Data	Compound	Phenotype	Description						
				Urinary metabolite co	ncentrations from 3	77 cancer				
	• Data	a 1 Common name	Discrete	patients measured by	1H NMR. Phenotyp	be:N -				
				cachexic; Y - control	peoptrations from (7				
				urinary metabolite concentrations from 97 cancer patients measured by 1H NMR. Phenotype: musc						
	O Data	a 2 PubChem CID	Continuous	gain (percentage with	nin 100 days, nega	tive values				
				indicate inuccle loss)						
				Submit						

Result

Metabolite Set	Total	Hit	Statistic	Expected	P Value	Holm P	FDR	Details
TRYPTOPHAN METABOLISM	34	2	15.088	1.3158	5.3712E-5	0.0024707	0.0020529	عاهيد
PROPANOATE METABOLISM	18	1	17.695	1.3158	1.3942E-4	0.0062741	0.0020529	عاشد
BETAINE METABOLISM	10	2	14.311	1.3158	1.4515E-4	0.0063865	0.0020529	ماليد
METHIONINE METABOLISM	24	4	11.386	1.3158	1.7852E-4	0.0076762	0.0020529	عاشي

The Matched Metabolite Set

Metabolic Pathway Analysis

Pathway Analysis

- Purpose: to extend and enhance metabolite set enrichment analysis for pathways by
 - Considering the structures of pathway
 - Dynamic pathway visualization
- Currently supports ~1500 pathways covering 17 organisms (based on KEGG)

Network Topology

- Which positions are important?
 - Hubs
 - Nodes that are highly connected (red ones)
 - Bottlenecks
 - Nodes on many shortest paths between other nodes (blue ones)
- Graph theory
 - Degree centrality
 - Betweenness centrality

Junker et al. BMC Bioinformatics 2006

Data Upload

ûHome	Statistical Analysis	Enrichment Analysis	Pathway Analysis	Time Series	Other Utilities			
Steps								
- Upload								
Processing								
 <u>Statistics</u> 	Enter a on	e-column compoun	d list:		se example data:			
Enrichment		Acetoacetic acid						
 Pathway Time Series 								
Peak search								
Metabolites	Or upload a concentration table (.csv)							
- Download	Browse							
Log out								
	Compound La	abel:	Please s	ini 💌				
	Phenotype La	ibel	Please s	in 💌				
	Use example data:							
	Data Description							
	Dataset 1 Urinary metabolite concentrations from 77 cancer patients measured by 1H NMR. Phenotype: N - cachexic; Y - control							
			Submit					

Pathway Libraries

Home	Please select a pathway library :					
Steps		☞ Homo sapiens (human) [80]				
- Upload		C Mus musculus (mouse) [82]				
Processing	Wammais	C Rattus norvegicus (rat) [81]				
 <u>stansuos</u> Enrichment 		C Bos taurus (cow) [81]				
▼ Pathway						
- <u>Set param.</u>	Birds	C Gallus gallus (chicken) [78]				
View result						
► <u>Time Series</u>	Fish	🔿 Danio rerio (zebrafish) [81]				
- <u>Download</u>						
Peak search	Insects	C Drosophila melanogaster (fruit fly) [79]				
 Metabolites Quality control 	Newstades	C Comerkaluitia elegene (vemetede) [70]				
Loq out	Nematodes	Caenornabditis elegans (nematode) [78]				
	Fungi	C Saccharomyces cerevisiae (yeast) [65]				
	Blante	C Oryza sativa japonica (Japanese rice) [83]				
	Flants	C Arabidopsis thaliana (thale cress) [87]				
		C Escherichia coli K-12 MG1655 [87]				
		C Bacillus subtilis [80]				
	Prokarvotes	C Pseudomonas putida KT2440 [89]				
		C Stabhdococcus aureus N315 (MRSA//SSA) [73]				
		C Thermotors maritima (67)				
		 mernologa manuna [37] 				

Network Topology Analysis

Please specify a reference metabolome:

- Use all compounds in the selected pathways
- Upload a reference metabolome based on your analytical platform

Please specify pathway analysis algorithms :

Pathway Enrichment Analysis	 Global Test Global Ancova
Pathway Topology Analysis	 Relative-betweeness Centrality Out-degree Centrality
	Submit

Pathway Visualization

Pathway Visualization (cont.)

Result

0.0

0.1

Pathway Impact

0.3

0.2

0.4

0.5

FDR Impact 🔩 Details Pathway Name Total Hits p t1 -log(p) Holm p Glycine, serine and threonine metabolism 48 9 1.7267E-4 3.7628 0.0088061 0.0044709 0.48394 KEGG SMP Valine, leucine and isoleucine biosynthesis 27 5 3.637E-4 3.4393 0.018185 0.0044709 0.06148 KEGG SMP Methane metabolism 34 6 3.8485E-4 3.4147 0.018858 0.0044709 0.16466 KEGG 2 Sulfur metabolism 18 4.755E-4 3.3229 0.022824 0.0044709 0.03307 KEGG SMP Valine, leucine and isoleucine degradation 40 3 6.5285E-4 3.1852 0.030684 0.0044709 0.02232 KEGG SMP Arginine and proline metabolism 77 6 6.578E-4 3.1819 0.030684 0.0044709 0.06203 KEGG SMP 75 12 Aminoacyl-tRNA biosynthesis 6.9157E-4 3.1602 0.031121 0.0044709 0.11268 KEGG 44 5 3.1541 0.031121 0.0044709 0.04113 KEGG SMP Nicotinate and nicotinamide metabolism 7.0133E-4 Glutathione metabolism 38 2 0.0011587 2.936 0.049823 0.0059801 0.0019 KEGG SMP 4 KEGG SMP Propanoate metabolism 35 0.0013934 2.8559 0.058523 0.0059801 0.01603 Nitrogen metabolism 39 8 0.0013997 2.854 0.058523 0.0059801 0.00763 KEGG SMP Galactose metabolism 41 3 0.001486 2.828 0.059441 0.0059801 0.01992 KEGG SMP 3 0.059449 0.0059801 0.35252 Taurine and hypotaurine metabolism 20 0.0015243 2.8169 KEGG SMP 16 4 0.0016826 2.774 0.06394 0.0061295 0.0 KEGG Cyanoamino acid metabolism 79 1 0.0018984 2.7216 0.070241 0.0064103 0.10853 KEGG SMP Tryptophan metabolism Phenylalanine, tyrosine and tryptophan biosynthesis 27 2 0.0021242 2.6728 0.076472 0.0064103 0.00738 KEGG SMP Inositol phosphate metabolism 39 2.6546 0.077526 0.0064103 0.13703 KEGG SMP 1 0.002215 32 4 2.6454 0.077526 0.0064103 0.41957 KEGG SMP Pyruvate metabolism 0.0022624 Cysteine and methionine metabolism 56 2 0.0026796 2.5719 0.088426 0.0071926 0.02846 KEGG SMP SMP Alanine, aspartate and glutamate metabolism 24 6 0.0029727 2.5268 0.095127 0.0075805 0.25546 KEGG SMP SMP 5

Not Everything Was Covered

- Clustering (K-means, SOM)
- Classification (SVM, randomForests)
- Time-series data analysis
- Two -factor data analysis
- Peak searching

Two Factor Analysis

- Two way ANOVA
- Two way heatmap

Time series data analysis

- ANOVA-SCA
- Multivariate Empirical Bayes

Biomarker Discovery & Performance Evaluation

ROCCET (www.roccet.ca)

ROCCET	ROCC	ET: RO	C Curve	Explorer & Tester n ROC curve analyses on metabolomics data sets
Home	Data Formats	FAQs	Resources	
→ CLICK HERE TO S Receiver Operating Cha biomarkers. ROCCET i analyses on their meta Univariate ROC analy This module allows use • Identifying poten • Computing optim	TART aracteristic (ROC) cu s a freely available w bolomic data using t /sis . ers to perform classi tial biomarkers base <u>nal thresholds</u> for po prmances (<u>sensitivity</u>	urves are gen veb-based too both classica cal ROC anal cal ROC anal cal on area un ntential biom v, specificity.	erally considered of designed to as I univariate and r lyses and visuali ider the ROC cur akers; and likelihood ra	the method of choice for evaluating the performance of potential sist clinicians and bench biologists in performing common ROC based nore recently developed multivariate approaches. zation on individual features, including we <u>AUC</u> or <u>partial AUC</u> with confidence intervals; <u>tios</u>) at different cutoffs
Calculating perfo				
Calculating performance Multivariate ROC ana This module provides #	I lysis . Maa walleestahlishaa	annroachae	- Sunnart Vector	Machine (SVM) Partial Least Squares - Discriminant Analysis

Classical ROC

Sensitivity, Specificity & ROC curve

- Two important performance measures in a diagnostic tests
 - Sensitivity (true positive rate)
 - Specificity (true negative rate)
- Cutoff dependent
 - Increase cutoff, will improve specificity, decease sensitivity
- ROC curves integrate these two measures

How to construct ROC curves

- Input: a score on a univariate scale
 - A test gives continuous value (i.e. blood *Glucose* level)
 - A classifier that produces a continuous score (i.e. likelihood, probabilities)

Classical ROC curve

TA Lasko, et al (2005)

Explore ROC space

- The ROC curve itself (visualization)
- Compare different ROC curves
 - Area under the curve
 - AUC
 - When two curves cross
 - Partial AUC (pAUC)
 - Confidence Intervals
 - Empirical ROC curves are based on samples

Understand AUC

- Area under an ROC curve (AUC)
 - The probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one
 - a. The average specificity across all values of sensitivity
 - b. The average sensitivity across all values of specificity

ROCCET

- ROC curves based biomarker discovery and performance evaluation
 - Classical ROC Curve Analysis for individual biomarker
 - Multivariate biomarker model creation & assessment (automatic / manual mode)
 - PLSDA, Linear SVM, Random Forests
 - Calculate AUC & partial AUC with confidence intervals
 - Other supporting utilities

ROCCET: ROC Curve Explorer & Tester

-- a user-friendly tool for common ROC curve analyses on metabolomics data sets

Home

ROCCET

Data Formats

Resources

CLICK HERE TO START

Receiver Operating Characteristic (ROC) curves are generally considered the method of choice for evaluating the performance of potential biomarkers. ROCCET is a freely available web-based tool designed to assist clinicians and bench biologists in performing common ROC based analyses on their metabolomic data using both classical univariate and more recently developed multivariate approaches.

Univariate ROC analysis.

This module allows users to perform classical ROC analyses and visualization on individual features, including

- · Identifying potential biomarkers based on area under the ROC curve AUC or partial AUC with confidence intervals;
- · Computing optimal thresholds for pontential biomakers;
- · Calculating performances (sensitivity, specificity, and likelihood ratios) at different cutoffs

FAQs

Multivariate ROC analysis.

This module provides three well-established approaches - <u>Support Vector Machine (SVM)</u>, <u>Partial Least Squares - Discriminant Analysis</u> (<u>PLS-DA</u>), and <u>Random Forests</u> for classification and feature selection. Monte-Carlo cross validation (MCCV) with multiple iterations are employed to compute ROC curves and to calculate confidence intervals of their AUC.

ROC Explorer

This purpose of this module is to create and identify robust predictive models using multiple biomarkers. We have integrated feature selection and classification procedures for the three algorithms mentioned above. The procedures are repeated multiple times in order to identify the best model as well as the most stable features. Various graphical presentations such as <u>ROC Curve View</u>, <u>Probability View</u>, <u>Significant Feature View</u>, etc. are provided to facilitate improved understanding of the results.

ROC Tester

This module offers flexible interface which allows users to <u>manually construct a biomarker model</u> and to evaluate its performance. It also allows users to allocate a subset of samples as <u>hold-out data</u> for validation (that outside the CV). Other features permutations tests are also available for further model assessments.

Metabolomics 2012

ROCCET	ROCCE a user-fi	ET: ROC Curve Explorer & Tester riendly tool for common ROC curve analyses on metabolomics data sets
Home Upload Data check Data Processing	Data Upload	Data Format 😰 data in comma separated values or .csv format. Samples can be in rows or in columns with
	class labels follow in	nmediately after sample names. Data Format Browse Upload
	Try our test Test Data	data: Description
	Data Set 1 Data Set 2	Metabolite concentrations of 90 human plasma samples measured by 1H NMR. Phenotype labels: 0 - Controls; 1 - Patients. Metabolite concentrations of 41 human urine samples measured by DI-MS/MS Phenotype Labels 0 and 1 are two disease subtypes
		Submit

ROCCET

ROCCET: ROC Curve Explorer & Tester

-- a user-friendly tool for common ROC curve analyses on metabolomics data sets

Home Home

Data Analysis Options Choose two target groups of interest (for group number > 2) Select the two groups you want to compare 0 vs. 1 -Choose an analysis path: ⊙ To perform classical univariate ROC curve analyses Perform classical univariate ROC curve analyses, such as to generate ROC curve, to calculate AUC or partial AUC as well as their 95% confidence intervals, to compute optimal cutoffs for any given feature, as well as to generate performance tables for sensitivity, specificity, and confidence intervals at different cutoffs. C To perform automated biomarker selection and model evaluation (ROC Explorer) Perform automated biomarker selection and classification using one of the three multivariate algorithms support vector machines (SVM), partial least squares discriminant analysis (PLS-DA), and random rorests. © To create and evaluate custom biomarker models (ROC Tester) Manually select potential biomarker(s) and then test their performance using any of the three algorithms mentioned above. The module also allows users to hold out a subset of samples for validation purpose (i.e. outside the buildin cross validation). Users can also assess the importance of a model using permutation-based approaches.

Submit

ROCCET

Home

<u>Upload</u> Data check

Analysis — Univ. ROC

Download

Log out

Data Processing

ROC Explorer
 ROC Tester

Builder

Evaluator

ROCCET: ROC Curve Explorer & Tester

-- a user-friendly tool for common ROC curve analyses on metabolomics data sets

Data Analysis Options

Choose two target groups of interest (for group number > 2)

Select the two groups you want to compare 0 vs. 1 💌

Choose an analysis path:

C To perform classical univariate ROC curve analyses

Perform classical univariate ROC curve analyses, such as to generate ROC curve, to calculate AUC or partial AUC as well as their 95% confidence intervals, to compute optimal cutoffs for any given feature, as well as to generate performance tables for sensitivity, specificity, and confidence intervals at different cutoffs.

© To perform automated biomarker selection and model evaluation (ROC Explorer)

Perform automated biomarker selection and classification using one of the three multivariate algorithms - support vector machines (SVM), partial least squares discriminant analysis (PLS-DA), and random rorests.

© To create and evaluate custom biomarker models (ROC Tester)

Manually select potential biomarker(s) and then test their performance using any of the three algorithms mentioned above. The module also allows users to hold out a subset of samples for validation purpose (i.e. outside the buildin cross validation). Users can also assess the importance of a model using permutation-based approaches.

Submit

1 Home	Multivariate Exploratory ROC Analysis							
Upload	ROC curves are generated by Monte-Carlo cross validation (MCCV) using balanced subsampling. In each MCCV, two thirds (2/3) of							
 Data check 	the samples are used to evaluate the feature importance. The top 2, 3, 5, 10 100 (max) important features are then used to build							
Data Processing	classification models which is validated on the 1/3 the samples that were left out. The procedure were repeated multiple times to							
Analysis	calculate the performance and confidence intervals for each model. For PLS-DA algorithm, users can further specify the number of							
- Univ. ROC	latent variables (LV) to use. If the given number is higher than actual feature number, the value will be ignored and default 2 LV will b							
- ROC Explorer	used.							
ROC Explorer								
▼ <u>ROC Tester</u>	Select an algorithm :							
- Builder								
- Evaluator	(PLSDA only) number of latent variables 2							
- Download								
- Log out	POC View Brok View Brod View Sig Features							
	The image below shows the ROC curves based on the cross validation (CV) performance. The default are the ROC curves from all models averaged from all CV runs. You can also choose to show ROC curve for a							
	particular model. Select a model Image: Compare All Models							
	particular model. Select a model Compare All Models Use partial ROC curve							
	particular model. Select a model Compare All Models Use partial ROC curve Parameter: © X-axis (max FPR) © Y-axis (min TPR)							
	particular model. Select a model Compare All Models Use partial ROC curve Parameter: X-axis (max FPR) Y-axis (min TPR) Threshold: 0.2 range (0, 1)							
	particular model. Select a model Compare All Models Use partial ROC curve Parameter: X-axis (max FPR) Y-axis (min TPR) Threshold: 0.2							

AUC, pAUC & CI

Posterior probabilities

Accuracies

ROCCET: ROC Curve Explorer & Tester

- a user-friendly tool for common ROC curve analyses on metabolomics data sets

Home

ROCCET

	<u>Upload</u>
	Data check
	Data Processing
,	Analysis
	– <u>Univ. ROC</u>
	- ROC Explorer
	ROC Tester
	- Builder
	- Evaluator
	Download

Log out

Variable Selection Sample Holdout

The features on the left list box are ranked by their AUC. If you do not select features. The default will use all features for building the classifer. Note, some functions may not working if you select only one feature.

Glycerol]	Glycerol	
Acetate		Acetate	
Trimethylamine	1	Trimethylamine	
Pyruvate		Pyruvate	
Choline		Choline	
Propylene glycol		Propylene glycol	
Alanine		Alanine	
Arginine			
Isoleucine			
Glycine			
Betaine	NN Colort NN		
Leucine	22 Select 22		
Ethanol			
Serine	<< Cancel <<		
2-Hydroxybutyrate			
Acetone			
Acetoacetate			
Valine			
3-Hydroxyisovalerate			
Threonine			
Creatinine			
Succinate			
Proline			
Giucose			
Carnitine	1		1

Variable Selection Sample Holdout

Note, in order to get a decent ROC curve for the validation, we recommend that the hold-out data set contains balanced samples from both groups, and the number of hold-out samples should be > 8 (i.e. at least 4 from each group)

Samples from group 1

ROC & Posterior probabilities (with hold-out)

• AUC = 1

Accuracy = 7/8

Permutations

Based on AUC

Based on accuracy

Over-estimation

CV-based: 0.673

Some Technical Details (1)

- Calculate AUC
 - Empirical or non-parametric method
 - Connecting data points with straight lines
 - Trapezoid rules
- Calculate CI
 - Bootstrapping (classical univariate)
 - Repeated random sampling & cross validation

Some Technical Details (2)

- Biomarker selection
 - Classical univariate
 - AUC/pAUC
 - Multivariate MCCV-based
 - 1. Feature selection
 - PLSDA (VIP score)
 - RandomForest (mean decrease accuracy)
 - Linear SVM (feature weight)
 - 2. Model Selection
 - AUC/pAUC

Acknowledgements

- Dr. David Wishart
- Dr. David Broadhurst
- Dr. Rupa Mandal
- The Metabolomic Innovation Center (TMIC)

 University of Alberta, Canada THE METABOLOMICS INNOVATION CENTRE