MetaboAnalyst 4.0 Tutorial

Overview of new modules: Biomarker meta-analysis, MS Peaks to Pathways, and Network Explorer

Goal for this tutorial

To introduce users to the 3 new modules in MetaboAnalyst Version 4.0:

- 1) Biomarker Meta-Analysis
- 2) MS Peaks to Pathway
- 3) Network Explorer

1) What is Biomarker Meta-Analysis?

- The combination of multiple independent studies investigating the same condition in similar populations is termed "horizontal integration" or "meta-analysis".
- Leverages the collective power of multiple studies to overcome noise, bias, and small effect sizes to improve the precision in identifying true patterns within data.
- In metabolomics, biomarker validation is challenging due to inconsistencies in identified biomarkers amongst similar experiments.
- Solution: Performing meta-analysis across similar studies will increase the sample size and the power to identify robust and precise biomarkers of disease.
- Therefore the aim of the **Biomarker Meta-Analysis** module is the integration of individual metabolomic studies to identify consistent and robust biomarkers of disease.

Steps for Biomarker Meta-Analysis

- 1. Users must upload individual datasets in tabular form.
- 2. Differential enrichment analysis is performed to compute summary level-statistics for each feature (e.g. p-value) for each individual study.
- 3. The summary level-statistical results from all studies are combined, and meta-analysis is performed using one of several statistical options: **combining p-values**, **vote counting**, or **direct merging** of data into a mega-dataset.
- 4. The results can be visualized as a Venn diagram to view all possible combinations of shared features between the datasets.

Biomarker Meta-Analysis: Data Preparation

Prior to uploading the data, the user must clean the datasets in a spreadsheet program like Excel:

- At least 25% of features must be consistent between all datasets (named compounds, spectral bins, or peaks).
- Metadata must be consistent across all studies (e.g. Cancer vs Control labels for all datasets).
- Sample identifiers must be unique across all studies.

	A	B	C	D	E	F	G	H	1	J
1	Samples	140225dlvsa44_1	140226dlvsa30_1	140226dlvsa36_1	140227dlvsa36_1	140225dlvsa25 1	140225dlvsa33_1	140225dlvsa49_1	140226dlvsa12_1	140226dlvsa14_1
2	Class	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Control	Control	Control	Control	Control
3	1_5-anhydroglucitol	6799	17473	38267	12027	10561	19520	7778	23835	7063
4	1-monoolein	165	411	525	726	459	350	1221	673	158
5	1-monopalmitin	107	100	195	122	86	210	189	190	96
6	1-monostearin	67	125	209	200	182	223	139	184	70
7	2 3 5-trihydroxypyrazine NIST	34	54	45	107	49	73	84	58	20
8	2_3-dihydroxybutanoic acid NIST	74	146	183	152	58	115	115	184	17
9	2-deoxyerythritol	334	765	474	495	240	534	535	532	277
10	2-deoxytetronic acid NIST	762	1830	1356	1128	345	1670	1895	1248	597
11	2-hydroxybutanoic acid	7786	15277	7794	9810	1816	15962	17303	10140	8135
12	2-hydroxyglutaric acid	233	1274	1021	1533	979	1785	2182	1274	232
13	2-hydroxyhippuric acid	84	82	107	109	784	153	80	93	118
14	2-hydroxyvaleric acid	1392	1047	876	1170	926	1020	1430	934	1257
15	2-ketoisocaproic acid	2094	1229	1021	2840	708	1609	1699	1275	2247
16	3-aminoisobutyric acid	891	473	362	387	742	507	1105	553	735
17	3-hydroxybutanoic acid	5015	2336	1509	4757	905	4786	4152	3013	5299
18	3-phosphoglycerate	131	61	52	980	114	86	110	84	112
19	4-hydroxyproline	1389	5112	4323	4082	5184	2426	4082	1942	1236
20	5-hydroxynorvaline NIST	197	142	264	178	1065	272	409	223	227
21	5-methoxytryptamine	314	304	246	83	178	269	389	118	246
22	acetophenone NIST	299	971	801	1732	1206	1037	1105	779	442

Example dataset highlighting class labels and unique sample identifiers

Biomarker Meta-Analysis: Data Format

Datasets must be in tabular form and uploaded individually:

- Concentration table, spectral binned data, or a peak intensity table.
- Tables may either be in .csv or .txt format
- Class labels must be present, and only 2 classes are accepted (i.e. Cancer vs. Healthy)

	A	B	C	D	E	F	G	Н	1	J
1	Samples	140225dlvsa44_1	140226dlvsa30_1	140226dlvsa36_1	140227dlvsa36_1	140225dlvsa25 1	140225dlvsa33_1	140225dlvsa49_1	140226dlvsa12_1	140226dlvsa14_1
2	Class	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Control	Control	Control	Control	Control
3	1_5-anhydroglucitol	6799	17473	38267	12027	10561	19520	7778	23835	7063
4	1-monoolein	165	411	525	726	459	350	1221	673	158
5	1-monopalmitin	107	100	195	122	86	210	189	190	96
6	1-monostearin	67	125	209	200	182	223	139	184	70
7	2_3_5-trihydroxypyrazine NIST	34	54	45	107	49	73	84	58	20
8	2_3-dihydroxybutanoic acid NIST	74	146	183	152	58	115	115	184	17
9	2-deoxyerythritol	334	765	474	495	240	534	535	532	277
10	2-deoxytetronic acid NIST	762	1830	1356	1128	345	1670	1895	1248	597
11	2-hydroxybutanoic acid	7786	15277	7794	9810	1816	15962	17303	10140	8135
12	2-hydroxyglutaric acid	233	1274	1021	1533	979	1785	2182	1274	232
13	2-hydroxyhippuric acid	84	82	107	109	784	153	80	93	118
14	2-hydroxyvaleric acid	1392	1047	876	1170	926	1020	1430	934	1257
15	2-ketoisocaproic acid	2094	1229	1021	2840	708	1609	1699	1275	2247
16	3-aminoisobutyric acid	891	473	362	387	742	507	1105	553	735
17	3-hydroxybutanoic acid	5015	2336	1509	4757	905	4786	4152	3013	5299
18	3-phosphoglycerate	131	61	52	980	114	86	110	84	112
19	4-hydroxyproline	1389	5112	4323	4082	5184	2426	4082	1942	1236
20	5-hydroxynorvaline NIST	197	142	264	178	1065	272	409	223	227
21	5-methoxytryptamine	314	304	246	83	178	269	389	118	246
22	acetophenone NIST	299	971	801	1732	1206	1037	1105	779	442

Example dataset highlighting class labels and unique sample identifiers

Screenshot using the example data

Screenshot of meta-analysis methods

StaboAnaga 4.0	MetaboAnalyst a comprehensive tool for metabolomics analysis and interpreta	tion
Upioad Meta analysis Result table Venn diagram Download Exit	Combining P Values There are two widely used methods to combine p values from multiple studies for information integration - the Fisher's method (-2*∑Log(p)) and the Stouffer's method (based on inverse normal transformation). Stouffer's method incorporates weight (i.e. based on sample sizes) into the calculation; while Fisher's method is known as a 'weight-free' method. They usually have very similar performance. However, in metabolomic meta-analysis, larger sample sizes do not warrant larger weights as the quality of each study can vary. Users should choose to apply Stouffer's method only when all studies are of similar qualities (i.e. same analytical platforms with similar levels of missing values). Select a method Fisher's method 0.05	 R Command History Keep collapsed Savo InitDataObjects("conc", "metadata", F ALSE) mSete-ReadIndData(mSet, "datal.csv", "colu"); mSete-SentyCheckIndData(mSet, "data 1.csv") mSete-PerformLinmaDE(mSet, "datal.csv", "datal.csv", "log", l); mSete-ReadIndData(mSet, "datal.csv", "colu"); mSete-ReadIndData(mSet, "data2.csv", "colu"); mSete-SanityCheckIndData(mSet, "data2.csv", "colu");
1. Select one of three methods to perform meta-analysis	Vote Counting This is the simplest method to perform meta-analysis. Differentially expressed metabolites are first selected based on a threshold to obtain a list of significant features from each study. The vote for each feature can then be calculated as the total number of times it appears as significant in all features lists. The final significant features can be selected based on the minimal number of votes set by the user. Set a significance level 0.05 Set the minimal number of votes 2	 mSetPerformIndNormalization(mSet, "data2.csv", "log", 1); mSetPerformInimmaDE(mSet, "data2.cs v", 0.65, 0.0); mSetReadIndlata(mSet, "data3.csv", "colu"); mSetSenityCheckIndData(mSet, "data 3.csv") mSetPerformIndNormalization(mSet, "data3.csv", "log", 1); mSetPerformIndNormalization(mSet, "data3.csv", "log", 1); mSetReadIndData(mSet, "data3.cs v", 0.65, 0.0); mSetReadIndData(mSet, "data4.csv", "colu"); mSetSanityCheckIndData(mSet, "data4.csv", "data4.csv") mSetPerformIndNormalization(mSet, "data4.csv")
	Direct Merging This approach directly merges all datasets into a mega-dataset and then analyzes it as a single dataset. It should only be used when all datasets are very similar (i.e. collected by the same lab using the same analytical platforms) Set a significance level 0.05 Submit	17. mSet<-PerformLimmaDE(mSet, "data4.cs v", 0.05, 0.0); 18. mSet<-CheckMetaDataConsistency(mSet, F); 2. Click proceed to view results
	C Previous Proceed Xie Lab @ McGill (lest undeted 2018-02-02)	

Screenshot of meta-analysis example results

Example of a box-plot of pyrophosphate across the 4 different datasets.

From the image, pyrophosphate is consistently more expressed in patients with Adenocarcinoma than in healthy patients.

	-			51 - 41				R Command History
ñ	The statistics from individual da	ta analysis are giv	en in columns w	ith the correspo	nding dataset na	mes. You can eitr	her adjust its content or sort the table.	Keep collapsed
heolul	Data summary: Log fold change	by: Combine	edPval • Ord	er: Ascending	• Update		P Search ± Download	 InitDataObjects("conc", "metadata", F ALSE)
veta analysis		data1	data?	data2	data 4	CombinodTo	erat	<pre>2. mSet<-ReadIndData(mSet, "data1.csv",</pre>
Result table	adenosine-5-nhosnhate	-1 7535	uaiaz	Udido	uala4	Combineurs	1 Click here to	<pre>3. mSet<-SanityCheckIndData(mSet, "data l.csv")</pre>
/enn diagram	nuronhosphate	1.6520					select datasets	<pre>4. mSet<-PerformIndNormalization(mSet, "datal.csv", "log", 1);</pre>
Download	pyrophosphate	1 7075	The max nu	mber of dataset	ts that can be cor	mpared is	to be included	<pre>5. mSet<-PerformLimmaDE(mSet, "datal.cs v", 0.05, 0.0);</pre>
EXIL	meltetriese	-1.7275	four. Datas	ets without signi	ificant hits will be	excluded.	in the	<pre>6. mSet<-ReadIndData(mSet, "data2.csv",</pre>
	maitotriose	-0.57042		Name	DE #	Include		 mSet<-SanityCheckIndData(mSet, "data 2.csv")
	giutamine	0.25055		data1	3	~		<pre>8. mSet<-PerformIndNormalization(mSet, "data2.csv", "log", 1);</pre>
	lactamide	-0.16134		data2	12	~	(max 4)	9. mSet<-PerformLimmaDE(mSet, "data2.cs v", 0.05, 0.0);
	citrulline	0.17019		4-1-2			5.1	<pre>10. mSet<-ReadIndData(mSet, "data3.csv",</pre>
	lactic acid	-0.048584		data3	21		5.1871E-4 🔲 View	<pre>11. mSet<-SanityCheckIndData(mSet, "data</pre>
	alpha ketoglutaric acid	-0.52005		data4	2	~	2. Click submit	<pre>12. mSet<-PerformIndNormalization(mSet, "data3.csv", "log", 1);</pre>
	cystine	0.21575		meta_dat	34	~	to view	<pre>13. mSet<-PerformLimmaDE(mSet, "data3.cs v", 0.05, 0.0);</pre>
	taurine	0.0050866		Cancel	Sub	mit	resulting Venn	<pre>14. mSet<-ReadIndData(mSet, "data4.csv", "colu");</pre>
	maltose	-0.35858					Diagram	<pre>15. mset-sanitycheckindData(mset, "data 4.csv")</pre>
	fructose	0.54515	0.28723	0.60315	0.1174	29.697	0.0	<pre>"data4.csv", "log", 1);</pre>
	asparagine	0.26279	0.37151	0.66667	0.28026	29.053	0.0030375 🔳 View	<pre>v", 0.05, 0.0); </pre>
	oxalic acid	-0.24872	-0.55199	-0.44125	-0.32291	-27.222	0.0059119 🕒 View	<pre>F); For Declar Duplombingtion (Set); </pre>
			(1 of 3)	34 c4 1	2 3	15 •		isher", 0.05)

Screenshot of meta-analysis venn diagram view

Example of analysis-report

2) What is MS Peaks to Pathways?

- High-throughput analysis and functional interpretation of untargeted MS-based metabolomics data is a major bottleneck
- A promising approach is to shift the unit of analysis from individual compounds to pathways - similar to GSEA/MSEA
- Mummichog algorithm (Li et al. 2013) bypasses the bottleneck of identification prior to pathway analysis, leveraging a priori pathway/network knowledge to directly infer biological activity
- The **MS Peaks to Pathways** module implements this algorithm in a user-friendly interface, including an expanded library of 21 organisms derived from KEGG metabolic pathways

Steps for MS Peaks to Pathways

- 1) Users must upload a table containing three-columns, m/z features, p-values, and statistical scores (t-scores/fold-change values) --- see example below
- Users must specify the mass accuracy and ion mode of their MS instrument, and the p-value 2) cutoff
- 3) Users must select an organism's library from which to perform pathway analysis
- View pathway analysis results 4)
- 5) Visualize results in a global KEGG metabolic network

	7	2	304.2979	1.02E-10	14.7179316
Example of a dataset to		3	177.1024	1.62E-10	14.2666
Example of a dataset to		4	345.0277	1.72E-10	-14.209195
upload: user's data must		5	491.0325	1.83E-10	-14.146348
have identical column		6	258.0048	2.17E-10	-13.987636
titles m z n value and		7	483.1205	2.22E-10	-13.967634
uues, m.z, p.value, allu		8	694.9937	2.81E-10	-13.745172
t.score		9	270.9767	3.27E-10	13.6060705
	J	10	371.604	3.53E-10	-13.534483
		11	316.5773	3.71E-10	13.4893333

m.z

12

451.0505

p.value

t.score

4.04E-10 -13.412347

â

Set parameter

Metabolic network

View result

Download

Exit

MetaboAnalyst -- a comprehensive tool for metabolomics analysis and interpretation

Data Integrity Check:

Checking the class labels - at least three replicates are required in each class.
 If the samples are paired, the pair labels must conform to the specified format.
 The data (except class labels) must not contain non-numeric values.
 A The presence of missing values or features with constant values (i.e. all zeros)

Data processing information: Checking data content ...passed A total of 3934 input mz features were retained for further analysis The optimal number of significant features ~300. A total of 261 significant mz features were found based on the selected p-value cutoff: 1e-04 Missing value estimation Click Skip to Continue

Data Integrity Check

performs a check on your uploaded data to ensure it is suitable for further analysis

3. mSet<-UpdateMummichogParameters(mSet, "three", "positive", 1.0E-4);

mSet<-SanityCheckMummichogData(mSet)

R Command History appears real-time and is ordered sequentially

Xia Lab @ McGill (last updated 2018-02-02)

Screenshot of MS Peaks to Pathways example results

â

MetaboAnalyst -- a comprehensive tool for metabolomics analysis and interpretation

Predicted pathway activity profiles based on Mummichog:

A table of results containing ranked pathways enriched in user-uploaded data

						Explore Resu	Its in Network
		14		I IN III			
Pathway Name	Total 🗘	Hits (all) \$	Hits (sig.) \$	Fisher's Pvalue 🗘	EASE Score \$	Gamma Pvalue 🗘	Match Details
/itamin B9 (folate) metabolism	33	8	3	0.061284	0.24646	0.0011975	View
Drug metabolism - cytochrome P450	53	11	3	0.13848	0.38654	0.0026042	View
Slycosphingolipid biosynthesis - globoseries	16	5	2	0.11403	0.47249	0.0042576	View
Slycosphingolipid biosynthesis - ganglioseries	62	6	2	0.15795	0.53617	0.006189	View
Sialic acid metabolism	107	15	3	0.27033	0.55362	0.0068691	View
ryptophan metabolism	94	42	6	0.40228	0.58196	0.0081517	View
I-Glycan biosynthesis	48	7	2	0.20437	0.59226	0.0086803	View
/itamin E metabolism	54	7	2	0.20437	0.59226	0.0086803	View
Phosphatidylinositol phosphate metabolism	59	8	2	0.25207	0.64166	0.011793	View
Slycerophospholipid metabolism	156	18	3	0.37673	0.65677	0.012976	View
Slycolysis and Gluconeogenesis	49	19	3	0.41186	0.68674	0.015735	View
Methionine and cysteine metabolism	94	21	3	0.48018	0.74034	0.022487	View
Slycosphingolipid metabolism	67	16	2	0.59885	0.87363	0.06139	View
Aminosugars metabolism	69	16	2	0.59885	0.87363	0.06139	View
Pyrimidine metabolism	70	21	2	0.74822	0.93467	0.1107	View
Tyrosine metabolism	160	47	3	0.94362	0.98475	0.23503	View
C5-Branched dibasic acid metabolism	10	3	1	0.32235	1.0	1.0	View
Chondroitin sulfate degradation	37	3	1	0.32235	1.0	1.0	View
lexose phosphorylation	20	7	1	0.59805	1.0	1.0	View
Salactose metabolism	41	12	1	0.79196	1.0	1.0	View

2. "Set<-Read_PeakListData(mSet, "Replaci ng_with_your_file_path"); 3. mSet<-WolderMumichogParameters(mSet, "three", "positive", 1.0E-4); 4. mSet<-SantyCheckMumichogData(mSet) Click Explore Results in Network to visualize your results on a global KEGG metabolic network

+ X

R Command History

Keep collapsed E Save 1. InitDataObjects("mass_all", "mummicho g", FALSE)

> Click **view** to see detailed hits for each pathway

Xia Lab @ McGill (last updated 2018-02-02)

Screenshot of MS Peaks to Pathways Network View

3) Network Explorer

- Integrating multiple omics data and interpreting these results at a systems level is a significant challenge
- Biological networks are an intuitive and flexible vehicle to convey a priori knowledge with users data at a systems level
- The Network Explorer module provides users an easy-to-use tool that permits mapping of metabolites and/or genes onto any of the 5 molecular interactions networks:
 - KEGG global metabolic network, gene-metabolite interaction network, metabolite-disease interaction network, metabolite-metabolite interaction network, and a metabolite-gene-disease interaction network

							R Command History
A	Compound Name Map	Gene Name Mapping					Keep collapsed
Upload	Query	Hit	HMDB	KEGG	Details		 InitDataObjects("conc", "network", FA SE)
ID mapping	C00116	Glycerol	HMDB0000131	<u>C00116</u>		Delete	 mSet<-SetOrganism(mSet, "hsa") geneListFile<-"replace_with_your_file
Set parameter	C00565	Trimethylamine	HMDB0000906	<u>C00565</u>		Delete	<pre>name" 4. geneList<-readChar(geneListFile, file</pre>
Network viewer	C00033	Acetic acid	HMDB0000042	<u>C00033</u>		Delete	info(geneListFile)\$size) 5. mSet<-PerformIntegGeneMapping(mSet, g
Download	C00583	Propylene glycol	HMDB0001881	<u>C00583</u>		Delete	<pre>neList, "hsa", "entrez"); 6. cmpdListFile<-"replace with your file</pre>
Exit	C00022	Pyruvic acid	HMDB0000243	<u>C00022</u>		Delete	name" 7. cmpdList<-readChar(cmpdListFile, file
	C00719	Betaine	HMDB0000043	<u>C00719</u>		Delete	<pre>info(cmpdListFile)\$size) 8. mSet<-PerformIntenCmpdMapping(mSet, c)</pre>
Results of the name	C05984	2-Hydroxybutyric acid	HMDB000008	<u>C05984</u>		Delete	<pre>pdList, "hsa", "kegg"); pdList, CreateManpingResultTable(mSet)</pre>
mapping of the	C00207	Acetone	HMDB0001659	<u>C00207</u>		Delete	3. moce-ereaterappinghesaterable(moce)
uploaded data to	C00065	L-Serine	HMDB0000187	<u>C00065</u>		Delete	
MetaboAnalyst's	C00031	D-Glucose	HMDB0000122	<u>C00031</u>		Delete	R Command
internal database	C00079	L-Phenylalanine	HMDB0000159	<u>C00079</u>		Delete	History
Scroll down and	C02632	Isobutyric acid	HMDB0001873	<u>C02632</u>		Delete	appears
	C00064	L-Glutamine	HMDB0000641	<u>C00064</u>		Delete	real-time
CIICK Submit to	C00114	Choline	HMDB0000097	<u>C00114</u>		Delete	and is
continue.	C00073	L-Methionine	HMDB0000696	<u>C00073</u>		Delete	ordered
	C00082	L-Tyrosine	HMDB0000158	<u>C00082</u>		Delete	sequentially
	C00186	L-Lactic acid	HMDB0000190	<u>C00186</u>		Delete	ooquontiany
	C00037	Glycine	HMDB0000123	<u>C00037</u>		Delete	
	C00543	Dimethylamine	HMDB000087	<u>C00543</u>		Delete	
	C00077	Ornithine	HMDB0000214	<u>C00077</u>		Delete	
	C00058	Formic acid	HMDB0000142	<u>C00058</u>		Delete	
	C00188	L-Threonine	HMDB0000167	<u>C00188</u>		Delete	
	C00407	L-Isoleucine	HMDR0000172	C00407		Doloto	*

Network viewer

Download Exit

Select one

network to

explore your data

MetaboAnalyst -- a comprehensive tool for metabolomics analysis and interpretation

Users can choose one of five different modes of networks analysis:

KEGG Global Metabolic Network

Users can map metabolites and enzymes/KOs (KEGG Orthologs), and then visually explore the results in the KEGG global KEGG metabolic network (ko01100). This feature is specially suitable to integrate results from joint metabolomics and metagenomics studies.

Gene-Metabolite Interaction Network

The gene-metabolite interaction network enables exploration and visualization of interactions between functionally related metabolites and genes. The chemical and human gene associations were extracted from STITCH, such that only highly confident interactions are used. Most of associations in STITCH are based on co-mentions highlighted in PubMed Abstracts including reactions from similar chemical structures and similar molecular activities.

Metabolite-Disease Interaction Network

The metabolite-disease interaction network enables exploration of disease-related metabolites. The associations were obtained from HMDB. Disease association have been added to HMDB via the Human Metabolome Project's literature curation team.

Metabolite-Metabolite Interaction Network

The metabolite-metabolite interaction network helps to highlight potential functional relationships between a wide set of annotated metabolites. The chemical-chemical associations for the metabolites network were extracted from STITCH, such that only highly confident interactions are used. Most of associations in STITCH are based on co-mentions highlighted in PubMed Abstracts including reactions from similar chemical structures and similar molecular activities.

Metabolite-Gene-Disease Interaction Network

The metabolite-gene-disease interaction network provides a global view of potential functional relationships between metabolites, connected genes, and target diseases. The network is an integration of genemetabolite, metabolite-disease and gene-disease interaction networks.

	Keep collapsed
1.	<pre>InitDataObjects("conc", "network", LSE)</pre>
2.	mSet<-SetOrganism(mSet, "hsa")
3.	<pre>geneListFile<-"replace_with_your_fi name"</pre>
4.	<pre></pre>
5.	<pre>mSet<-PerformIntegGeneMapping(mSet, eneList, "hsa", "entrez");</pre>
6.	<pre>cmpdListFile<-"replace_with_your_fi name"</pre>
7.	<pre>cmpdList<-readChar(cmpdListFile, fi e.info(cmpdListFile)\$size)</pre>
8.	<pre>mSet<-PerformIntegCmpdMapping(mSet, mpdList, "hsa", "kegg");</pre>
9.	mSet<-CreateMappingResultTable(mSet
10.	mSet<-PrepareNetworkData(mSet):

Screenshot of Network Explorer View